人物介紹

數學狂熱者,擅長將數學 套入各種生活情境中。

幽默風趣愛搞笑,喜歡 出風頭。

個性憨厚,但其實是電 玩高手,號稱電玩狂人。

數學一級棒,說話很犀利,是博士的小助手。

外表是氣質美少女,但是 愛耍冷,喜歡各種藝術類 活動。

個子嬌小天真爛漫,有點 小迷糊,愛問問題,心中 永遠有十萬個為什麼?

喜歡吃美食,但又愛漂 亮,藉由運動維持身材。

3 一元一次方程式 147

線對稱與三視圖 199

3-1 式子的運算 151 **3-2** 解一元一次方程式 168

 3-2 解一元一次万曜式
 168
 教學附件
 231

 3-3 應用問題
 184
 計算機介紹
 255

課中標示說明

Thinking

例題有所區隔。

補給站

計算機

將特別值得同學思索及探討的問題,

用另一個段落來呈現,以便和課文與

提供相關的延伸或生活常識補充,

搭配計算機的使用教學,培養學生使

用計算機的正確態度。看到,代

於一段概念學習之後,將重點條列

化整理,讓同學更容易掌握重點。

針對較為困難或易產生錯誤的地

方,作為提示或提醒學生注意。

表可使用計算機協助計算。

□ 重點摘要

作為延伸思考及課外參考資料。

課後標示說明

學習前哨站

診斷學生是否已建立先備知識。

學習主題

根據該節主題切割成若干教學活動, 以利同學形成階段性的數學觀念,並 穩固學習的內涵。

教學例題

與課文相關的基本題目,以實例產 生呼應或作為對照說明。附有詳 解,並於題號旁標示其題目類型。

▲ 隨堂練習

通常於例題後,安排類似的題目,增 加同學自我演算的機會。不附解答。

深索活動

透過步驟化的學習,加強同學的思考 邏輯能力,並能觀察出數學的原理原 則。

議題

在課程內容中融入各項議題,培養學 生批判思考及解決問題的能力。

教學附件

配合課本教學內容,透過附件實際操 作,動手也動腦,加深學習成效。

重點回顧

將該節中重要的學習內容,作條列化 的統整,方便同學作有系統的複習。

自我評量

每一節後面均安排相關的複習題目, 以利於該節結束時,可以加強演練。

資訊普拉斯

提供相關的資訊教學補充,培養學生 正確使用工具的素養。

數學萬花筒

提供與該章節相關的補充知識等,作 為課外的參考資料。

自我挑戰

本單元為統整課程,由學生自行挑 戰,教師視班級情況決定如何運用。

趣學數學

結合教學內容,透過簡單、有趣的數 學問題,啟發學習樂趣。

跨領域

數學的應用是跨領域的,結合其他科 目的學習,幫助學生統整所學。

1 數與數線

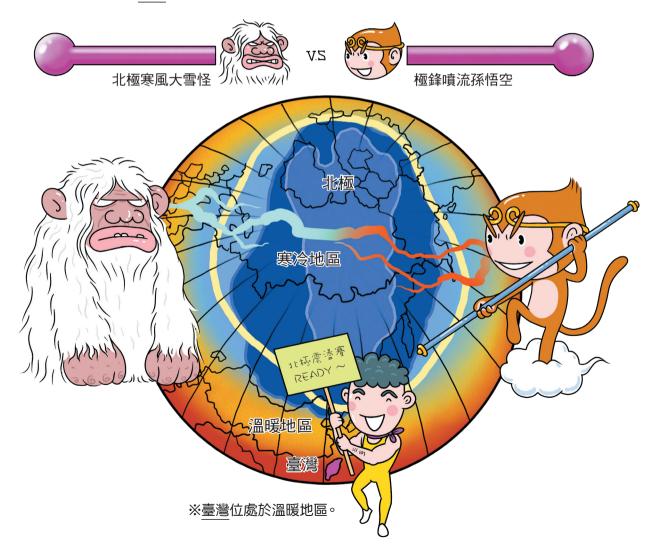
1-1 正數與負數

- 國小 3 年級 整數數線
- 國小 4 年級 數線與分數、小數
- 1.認識負數
- ▶ 2.數線
 - 3.數的大小
 - 4.相反數
 - 5.絕對值
- 1-2 正負數的加減
 - 1.正負數的加法
 - 2.正負數的減法
 - 3.正負數加減混合運算
 - 4.數線上兩點間的距離
- 1-3 正負數的乘除
- ·國小 4、5 年級 四則運算規律

• 國小 4、5 年級

加減混合運算

- ・國小 5 年級 乘法對加減法的分 配律
- ・國小6年級 整數、小數的四則 應用問題
- 國小 5 年級 位值表


- 1.正負數的乘法
- 2.正負數的除法
- ▶ 3.正負數的四則運算
- 1-4 指數記法與科學記號
 - 1.指數記法
 - 2.科學記號
- -----▼ ・高中 1 年級

對數函數

- · 7上
 - 3-1 式子的運算
- 8 上
 - 1-2 多項式的加減
- 7上
- 2-3 分數的加減運算
- 8上
- 2-3 畢氏定理
 - (平面上兩點間的距離)
- 7上
- 2-4 分數的乘除運 算與指數律
- · 8上
- 2-2 根式的運算
- 7 上
- 2-4 分數的乘除運 算與指數律
- ·8下
 - 1-1 數列 (等比)

國小時曾經學過如何利用「數」來表示溫度、長短、大小等數量,而生活中除了比 0 大的數外,也有像零下 4~5 度這樣比 0 度還低的溫度,又該如何記錄呢?本章將從溫度開始,逐步帶大家認識「數」與其運算的規則。

話說 2016 年 1 月,臺灣出現了霸王級寒流,冷得大家直發抖,原來是雪怪和老孫在作怪 ……

學 智 前 哨 站 本單元為學生自我複習, 教師可視班級情況決定如何運用。

回顧 1 整數的四則運算

國小5年級

$$15 - 6 \div 3 \times 2 + 7$$

$$=15-2\times2+7$$

$$=15-4+7$$

$$=11+7$$

$$=18$$

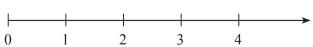
課前練習

計算下列各式的值:

$$(1) 13 + 3 \times 4 - 2 =$$

$$(2)26-9 \div 3 \times (2+1) =$$
 \circ

回顧 2 數線


國小4年級

在數線上標示
$$2\frac{1}{4} \times 3 \times \frac{15}{4} \circ$$

0 1 2 3 $\frac{15}{4}$ 4

課前練習

在數線上標示
$$\frac{2}{3}$$
、2、 $\frac{10}{3}$ 。

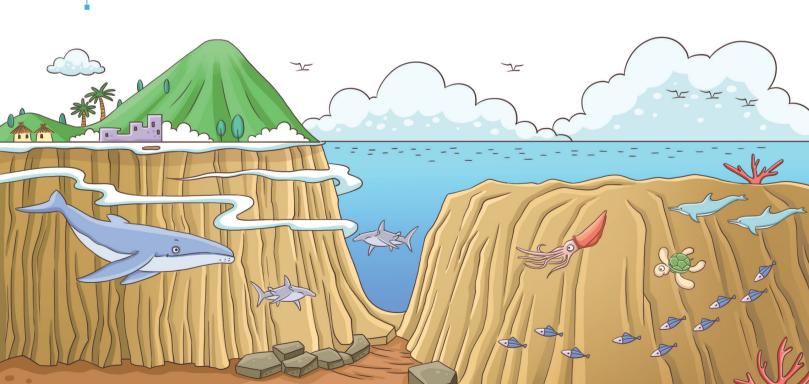
1-1 正數與負數

認識負數

在日常生活中,有一些<mark>相反或相對的量</mark>,可以用「+」(讀作正)號與「-」(讀作 負)號來表示。例如:以攝氏 0 度為基準,高於攝氏 0 度為正,低於攝氏 0 度為負。 上圖中,紐西蘭皇后鎮的氣溫為「-4 度」,就是指「零下 4 度」;臺北的氣溫為「35 度」,就是「+35 度」的簡記。

除了氣溫之外,賺錢與賠錢、成績進步與退步、上升與下降等性質相反或相對的量,也可以用「+」與「-」來表示。

例 相對的量


自評 P21 第 1、2 題

- 1. 以海平面為基準,如果<u>臺灣</u>最高峰<u>玉山</u>的高度 3952 公尺,記為+3952 公尺;目前所知全球最深的海溝為馬里亞納海溝,其最大深度為海平面下方 11034 公尺,該如何表示?
- 2. 以全班的數學平均成績 70 分為基準,<u>心平</u>這次數學考 85 分,記為+15 分, 而書愷這次數學考 50 分,該如何表示?
- 解 1. 馬里亞納海溝的最大深度為海平面下方 11034 公尺,可記為-11034 公尺。
 - 2.以全班平均成績70分為基準,

因為<u>心平</u>考 85 分,比全班平均成績多 15 分,記為+15 分; 所以書愷考 50 分,比全班平均成績少 20 分,應記為-20 分。

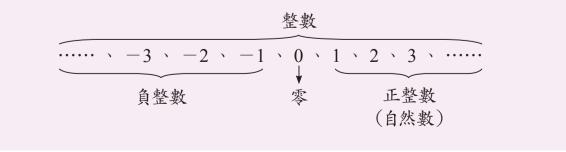
/ 隨堂練習

- 1. 東方與西方是相對的,<u>小新</u>以車站為基準,向東走 2 公里記為 + 2 公里,那麼 小新由車站向西走 1 公里,可記為 公里。
- 2. 七年九班在園遊會擺設攤位,其成本為 6000 元,如果總收入 4000 元,記為 -2000 元,那麼總收入為 9000 元,可記為 元。

我們將比 0 大的數稱為**正數**,比 0 小的數則稱為**負數**,而 0 不是正數,也不是**負數**。例如: $+2 \times +5.2 \times +\frac{1}{3}$ 等數都是正數, $-4 \times -3.6 \times -\frac{2}{5}$ 等數都是負數。此時「+」、「-」用來表示「正」、「負」的特性,稱為性質符號。

性質符號相同的兩數稱為同號數,例如:+5.2 與 +2 是同號數、-4 與-3.6 是同號數。性質符號相異的兩數稱為 **異號數**,例如:+5.2 與-4 是異號數、-3.6 與+15 是異號數。

當「+」、「-」表示「加」、「減」運算時,稱為運算符號。

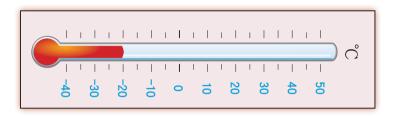

習慣上,我們會把正數的性質符號省略,例如:+7 記作 7,+3.1 記作 3.1,;但是負數的性質符號不可以省略。

/ 隨堂練習

判別下列各小題中的兩數是同號數或異號數,並且在適當的空格內打「 🗸 」:

正數中,像 $1 \times 2 \times 3 \times 4 \times 5 \times \dots$ 這樣的數,稱為正整數,也稱為**自然數**。負數中,像 $-1 \times -2 \times -3 \times -4 \times -5 \times \dots$ 這樣的數,稱為負整數。我們將 $0 \times \mathbb{E}$ **數**、負整數合稱為整數。

₿■整數



數線 ▼可搭配附件2

國小是以 0 為起點,將正數標示在向右延伸的數線上。在學過負數後,我們是否能將負數標示在數線上呢?

如上圖,將溫度計橫放,使高於 0 度的溫度刻度都在 0 的右邊,則低於 0 度的溫度刻度會在 0 的左邊。

▶ 數線的畫法

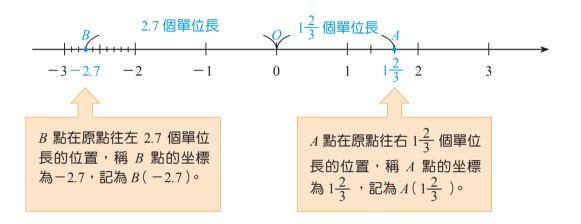
在畫數線時,我們可以仿照上圖,步驟如下:

步驟 1:畫一條水平直線,並在直線上任取一點作為基準點,稱為<mark>原點</mark>。 原點所對應的數是 0。

步驟 2:在直線的右邊標上箭頭表示正向,反方向為負向。

步驟 3:選取適當的固定長度,當成 1 個單位,稱為單位長。以原點為起點,往右邊 每隔 1 個單位長畫一刻度,依序標示 1、2、3、4、……。

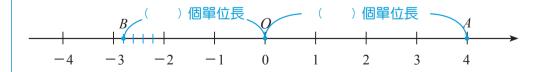
步驟 4: 再由原點為起點,往左邊每隔 1 個單位長畫一刻度,依序標示-1、-2、-3、-4、·····。


墩▲數線

數線的三要素:1.原點 2.正向(箭頭) 3.單位長

數線上的坐標

學會數線的畫法後,可以利用數線上的點來對應數,此數稱為該點的坐標。原點所對應的數是 0,原點右邊所有的點對應的數都是正數,原點左邊所有的點對應的數都是負數。如下圖,O點在原點的位置,我們稱 O點的坐標為 0,記為 O(0)。



如果數線上A點所對應的數是a,則A點的坐標為a,記為A(a)。

/ 隨堂練習

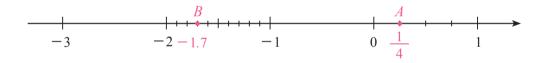
自評 P21 第 3 題

完成下面空格,並寫出數線上A、B兩點的坐標。

A 點坐標為 , 記為

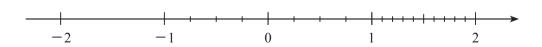
B 點坐標為_____, 記為____。

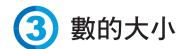
由前面的學習可知,數線上每一個「點」都對應一個「數」;反過來說,每一個「數」在數線上都可以找到一個對應這個數的「點」。


例 禁 標示數線上點的位置

在數線上標示出 $A(\frac{1}{4})$ 、B(-1.7)兩點。

 $A(\frac{1}{4})$ 表示 A 點在原點往右 $\frac{1}{4}$ 個單位長的位置,將數線上 0 到 1 之間的長度 分成 4 等分,則自原點往右邊的第 1 個等分點即為 $A(\frac{1}{4})$ 。


B(-1.7)表示 B 點在原點往左 1.7 個單位長的位置,將數線上 -1 到 -2 之間的長度分成 10 等分,則自 -1 往左邊的第 7 個等分點即為 B(-1.7)。


我們將 $A(\frac{1}{4})$ 、B(-1.7)兩點標示如下:

▶ 隨堂練習

在數線上標示出 $A(\frac{3}{4})$ 、B(-2)、C(1.4)和 $D(-\frac{3}{4})$ 四點。

數的比較大小

-2 是比 0 小 2 的數,-5 是比 0 小 5 的數,因此-2 > -5。如果把它標示在數 線上,可以發現-2所對應的點在-5的右邊。

事實上,在數線上我們將負數標記在原點的左邊,正數標記在原點的右邊,數 線上愈右邊的數愈大,愈左邊的數愈小,如下圖。

在上圖中,將 $5 \times -5 \times 2 \times -2$ 與 0 這些數所對應的點都標示在數線上,可以發 現其位置由左至右依序為-5、-2、0、2 與 5,因此-5<-2<0<2<5。

◎▲數的比較

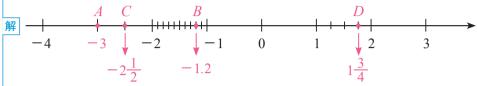
- 1 數線上愈右邊的點所對應的數愈大,愈左邊的點所對應的數愈小。
- 2. 在數線上,負數所對應的點皆在原點的左邊,而正數所對應的點皆在原點的 右邊,因此「負數<0<正數」。

✓ 隨堂練習

- 1. 最小的正整數是 ,最大的負整數是 。
- 2.比較下列各數的大小關係,在空格中填入「>、=或<」:

$$(1)3 -4$$

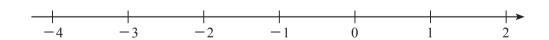
$$(2) - 6$$


$$(1) 3 -4 (2) -6 0 (3) -7 -2$$

例3 利用數線比較數的大小

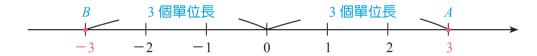
自評 P21 第 4 題

在數線上標示出 A(-3)、B(-1.2)、 $C(-2\frac{1}{2})$ 、 $D(1\frac{3}{4})$ 四點,並將各點所 對應的數由小到大排列。



因為 $A \cdot B \cdot C \cdot D$ 這四點在數線上的 位置由左至右依序為 $A \cdot C \cdot B \cdot D$, 所以 $-3 < -2\frac{1}{2} < -1.2 < 1\frac{3}{4}$ 。

🌽 隨堂練習


1. 在數線上標示出A(-4)、B(-1.3)、 $C(1\frac{1}{3})$ 、 $D(-2\frac{2}{5})$ 四點。

 $2. 將 -4 \cdot -1.3 \cdot 1\frac{1}{3} \cdot -2\frac{2}{5}$ 由小到大排列。

相反數

如下圖,數線上A(3)、B(-3)兩點分別在原點的左右兩側,且與原點的距離 相等(都是 3 個單位長),因此稱 3 與-3 万為相反數,即 3 的相反數是-3,-3 的 相反數是 3, 並規定 0 的相反數是 0。

將一個正數的前面加上「一」號,就得到此正數的相反數,例如:在3的前面加 上「一」號,就得到3的相反數-3。

將一個負數的前面加上「一」號,也可用來表示此負數的相反數,例如:

-3 的相反數可用-(-3)表示。由於-3 的相反數就是3,因此-(-3)=3。

同理,
$$-(-2\frac{4}{5})=2\frac{4}{5}$$
, $-(-4.3)=4.3$ 。

事實上,不論 a 為正數或負數, a 和-a 互為相反數, -(-a)=a。

፟□┃┃相反數

- 1 在數線上,位於原點左右兩側,且與原點距離相等的兩個點,所對應的數互 為相反數。
- 2.不論 a 為正數或負數 $\cdot a$ 與 -a 互為相反數 $\cdot (-a) = a$
- 3.0 的相反數為 0。

✓ 隨堂練習

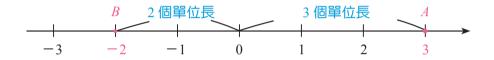
自評 P22 第 5 題

回答下列問題:

(1)12.5 的相反數為

$$(2) - 2\frac{1}{3}$$
 的相反數為 $(3) - (-6)$

$$(3) - (-6)$$


(5)

絕對值

在數線上,一個數 a 所對應的點 A(a) 與原點的距離,稱為這個數 a 的絕對值,以符號 |a| 表示。

例如:(1)數線上,點A(3)與原點的距離是[3] 的絕對值[3] ,以 [3] 表示。因為A(3)與原點的距離為[3] ,所以 [3] [3] 。

(2)數線上,點 B(-2)與原點的距離是「-2 的絕對值」,以 |-2| 表示。 因為 B(-2)與原點的距離為 2,所以 |-2|=2。

從上面的例子可知,<mark>一個正數的絕對值就是它自己,一個負數的絕對值就是把</mark> 它的負號去掉後所得的數。

隨堂練習

自評 P22 第 8 題(1)

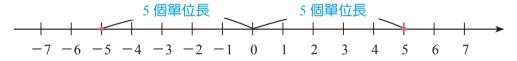
計算下列各式的值:

(1)
$$|4| =$$
 (2) $|-5\frac{1}{3}| =$ (3) $|-3.1| =$

Thinking

- 1. 有沒有絕對值等於-2.7的數?
- 2. 有沒有絕對值等於 0 的數?

◎ 絕對值


- 1. 數線上,點 A(a) 與原點的距離稱為 a 的絕對值,以 |a| 表示。
- 2.任意數 a 的絕對值會大於或等於 0。

例4 某數的絕對值

白評 P22 第 6 題

如果 | 甲數 | =5,則甲數是多少?

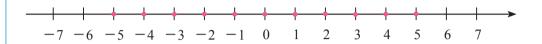
解 | 甲數 | =5 ,表示在數線上甲數所對應的點與原點的距離為 5 個單位長,如下圖所示:

所以甲數=5或甲數=-5。

由 例4 可知,5 和-5 互為相反數,它們在數線上所對應的點與原點的距離都是 5 個單位長,所以|5| = |-5| = 5。也就是說,互為相反數的兩數,其絕對值相等,即|a| = |-a|。

隨堂練習

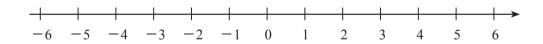
如果 |a| = 3.5,則 a 是多少?

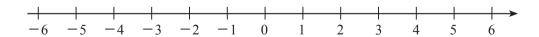

例 絕對值小於某數的整數點

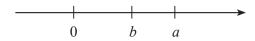
白評 P22 第 7 題

在數線上標示出絕對值小於6的所有整數點,並將這些點所對應的數寫出來。

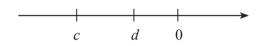
解絕對值小於6的整數就是與原點距離小於6的整數點,


如下圖所示:


這些點所對應的數為:-5、-4、-3、-2、-1、0、1、2、3、4、5。


1. 在數線上標示出絕對值為 4 的所有整數點, 並將這些點所對應的數寫出來。

2. 在數線上標示出絕對值小於 4 的所有整數點,並將這些點所對應的數寫出來。



數線上,在原點的右邊,離原點愈遠的點所代表的正數愈大。因此,如果 $a \cdot b$ 為兩個正數,且 |a| > |b| (代表 a 的點離原點較遠),則 a > b。

例如: |5|>|3|,則5>3。

數線上,在原點的左邊,離原點愈遠的點所代表的負數愈小。因此,如果 $c \cdot d$ 為兩個負數,且 |c| > |d|(代表 c 的點離原點較遠),則 c < d。

例如: |-5| > |-3|,則-5 < -3。

自評 P22 第 8 題

利用絕對值比較-123 與-456 的大小。

解數線上,-123與-456均在原點左邊,

$$|-123| = 123 \cdot |-456| = 456 \circ$$

因為 | -456 | > | -123 | ,表示-456 離原點較遠,

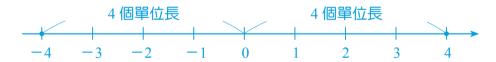
所以-456<-123。

/ 隨堂練習

在下列各題中,填入「>」或「<」的符號:

1 正數與負數

比 0 大的數稱為正數,比 0 小的數稱為負數。 0 不是正數,也不是負數。


2數線

- (1)數線的基本要素:原點、正向(箭頭)、單位長。
- (2)數線上向右為正向,愈右邊的點所對應的數愈大, 愈左邊的點所對應的數愈小。

3相反數

- (1)在數線上,位於原點左右兩側,且與原點距離相等的兩個點,所對應的數互為 相反數。
 - **囫**因為4與-4位於原點左右兩側,且與原點距離相等,故4與-4互為相反數。

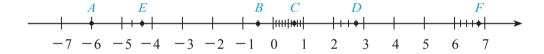
- (2)不論 a 為正數或負數, a 與-a 互為相反數。
 - 例 5 與−5 互為相反數。
- (3)0的相反數是0。

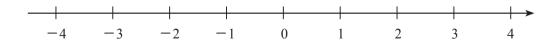
4 絕對值

- (1)一個數的絕對值,就是在數線上,對應這個數的點與原點的距離。
- (2)a 為任意數 |a| 會大於或等於 0。
- (3)互為相反數的兩數,其絕對值相等,即|a| = |-a|。

$$| -2 | = | 2 | = 2 \circ$$

①高爾夫球賽中,以標準桿為基準,Triple Bogey(三柏忌)為高於標準桿3桿,記為+3,Eagle(老鷹)為低於標準桿2桿,可記為




課 P8 例 1

②衛生福利部統計處資料顯示,國中七年級學生平均身高 156 公分,以此為基準,若土洋身高 161 公分,記為+5 公分,則冠儀身高 153 公分,可記為 公分。

3 寫出數線上 $A \times B \times C \times D \times E \times F$ 各點的坐標。

課 P11 隨堂

5回答下列問題:


課 P15 隨堂

- (1)-2.5 的相反數為____。
- (2)7的相反數為____。
- (3) 5 的相反數為____。
- (4)0的相反數為。
- 6 如果 | 甲數 | = 3,則甲數是多少?在數線上標示出這些數所對應的點。

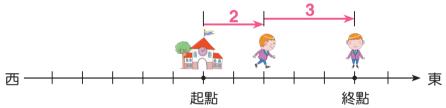
7在數線上標示出絕對值小於7的所有整數點,並將這些點所對應的數寫出來。

課 P18 例 5

8回答下列問題:

(2)將 $-2\frac{1}{3}$ 、|-4|、|5|、-|-6|、3由小到大排列: 課P19例6

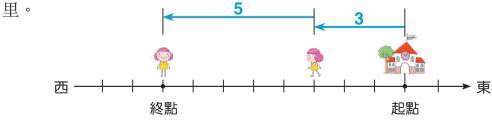
1-2 正負數的加減


本節將利用數線的概念,逐步發展加法運算的規則,再利用溫差的情境與加法運算規則,學習正負數的減法,並適當使用計算機協助計算、驗算及進行數學探究。

1 正負數的加法

▶ 同號數相加

以校門口為基準,向東為正向,下列是傑克與安琪走路的情況:


(1)如下圖,傑克自校門口向東走 2 公里,記作 +2 公里,再向東走 3 公里,記作 +3 公里,則傑克最後的位置相當於自校門口向東走了 2+3=5 公里,記作 +5 公里。

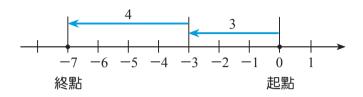
兩正數相加,計算結果為正。

上例也可以用算式表示為(+2)+(+3)=+(2+3)=+5, 習慣上可將正號省略, 記為 2+3=5。 兩數的絕對值相加

(2)如下圖,<u>安琪</u>自校門口向西走 3 公里,記作 -3公里,再向西走 5 公里,記作 -5公里,則<u>安琪</u>最後的位置相當於自校門口向西走了 3+5=8 公里,記作 -8公

兩負數相加,計算結果為負。

上例也可以用算式表示為(-3)+(-5)=-(3+5)=-8。 兩數的絕對值相加



例 圖示同號數相加

白評 P44 第 1 題(1)

在數線上圖示(-3)+(-4)的結果,再用算式計算其值。

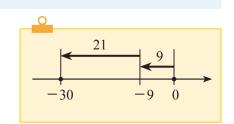
解將起點定為原點,從原點向左3個單位長後,再向左4個單位長。

最後的結果相當於從原點向左 3+4=7 個單位長。

算式:
$$(-3)+(-4)=-(3+4)=-7$$

/ 隨堂練習

在數線上圖示(-4)+(-2),並計算其結果。

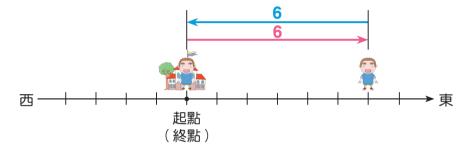

同號數相加

雨同號數相加等於兩數的絕對值相加,再冠上原來的性質符號。

例2 同號數相加

自評 P44 第 1 題(1)

計算(-9)+(-21)的值。


隨堂練習

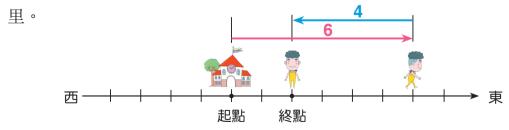
計算下列各式的值:

$$(1)(-29) + (-41)$$

$$(2)(-52)+(-19)$$

如下圖,<u>威利</u>自校門口向東走 6 公里, 記作+6 公里, 再向西走 6 公里, 記作-6 公里, 則威利最後的位置, 就在校門口。 自評 P44 第 1 題(6)

上例可以用算式表示為6+(-6)=0。同理,任意數與其相反數的和為0。

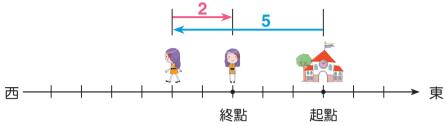

◎▲兩相反數的和

無論 a 為正數 $\cdot 0$ 或負數 $\cdot a$ 與其相反數的和為 0 ,即 a+(-a)=0 。

異號數相加

以校門口為基準,向東為正向,下列是洛基與艾美走路的情況:

(1)如下圖,<u>洛基</u>自校門口向東走 6 公里,記作 + 6 公里,再向西走 4 公里,記作 - 4 公里,則<u>洛基</u>最後的位置相當於自校門口向東走了 6-4=2 公里,記作 + 2 公


6比4大,抵消後的結果與6的性質符號相同。

上例可以用算式表示為 6+(-4)=+(6-4)=+2。 較大的絕對值-較小的絕對值

第一章 數與數線

26

(2)如下圖,<u>艾美</u>自校門口向西走 5 公里,記作-5 公里,再向東走 2 公里,記作+2 公里,則<u>艾美</u>最後的位置相當於自校門口向西走了 5-2=3 公里,記作-3 公里。

5比2大,抵消後的結果與-5的性質符號相同。

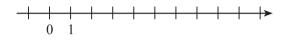
例3 圖示異號數相加

自評 P44 第 1 題(2)~(5)

在數線上圖示下列各式的結果,再用算式計算其值。

$$(1)(-3)+7$$
 $(2)3+(-5)$

解 (1)


算式:(-3)+7=+(7-3) ← 7>3,抵消後的結果與7的性質符號相同。 =4

// 隨堂練習

在數線上圖示下列各式的結果,並在□中填入性質符號,且求出其值:

$$(1)9+(-2)$$

$$(2)(-7)+2$$

Thinking

甲數為正數,乙數為負數,則:

- (1)如果 | 甲數 | > | 乙數 | ,則甲數 + 乙數的結果是正數或負數? 試舉出一個例子。
- (2)如果 | 甲數 | < | 乙數 | ,則甲數 + 乙數的結果是正數或負數? 試舉出一個例子。

例4 異號數相加

自評 P44 第 1 題(2)~(5)

計算下列各式的值:

$$(1)27 + (-38)$$

$$(2)(-11)+36$$

$$(1)27+(-38)$$

$$=-(38-27) \longrightarrow 38>27$$
,計算
$$=-11$$
結果為負。

□ 異號數相加

兩異號數相加的結果,等於較大的絕對值減去較小的絕對值,再冠上絕對值較大者的性質符號。

28

/ 隨堂練習

1. 在□中填入性質符號,並求出其值:

$$(1)4+(-42)=[(42-4)]$$

= •

$$(2)(-40)+60= \square (60-40)$$

=____。

2. 計算下列各式的值:

$$(1)30+(-18)$$

$$(2)(-17)+15$$

3 探索活動 被加數與和的大小

將數字牌分為正數、0與負數三堆,完成下列空格:

負數

0

(1)先在心中想一個數,此數是。

- (2)從**正數**牌堆中任選一張牌,此牌的數為____,則心中想的數與此數相加的 結果 心中想的數。(填大於、小於或等於)
- (3)從**負數**牌堆中任選一張牌,此牌的數為____,則心中想的數與此數相加的 結果 心中想的數。(填大於、小於或等於)
- (4) 將心中想的數與 0 相加的結果 心中想的數。(填大於、小於或等於)。

事實上,若a為任意數,則(1)a+正數,其結果比a大;

(2)a+**負數**,其結果比 a 小;

(3)a+ 0,其結果與 a 相等。

▶ 加法交換律

兩個正數相加合乎加法交換律,例如:3+8=8+3。事實上,對於任意兩數相加時也合乎加法交換律。例如:3+(-2)=(-2)+3=1。

▶ 加法結合律

三個正數相加合乎加法結合律,例如:(5+7)+9=5+(7+9)。事實上,對於 任意三數相加時也合乎加法結合律。

例如:
$$[2+(-3)]+(-4)=(-1)+(-4)=-5$$
,
 $2+[(-3)+(-4)]=2+(-7)=-5$,
所以 $[2+(-3)]+(-4)=2+[(-3)+(-4)]$ 。

◎▲加法交換律與結合律

1.如果 $a \cdot b$ 為任意兩數,則 a+b=b+a。(交換律)

2.如果 $a \cdot b \cdot c$ 為任意三數,則 (a+b)+c=a+(b+c)。(結合律)

例 利用交換律與結合律解題

計算下列各式的值:

$$(1)(-410)+52+410$$

$$(2)300+(-3.2)+(-6.8)$$

$$(1)(-410) + 52 + 410$$

$$= (-410) + 410 + 52$$

$$= 0 + 52$$

$$= 52$$

$$(2)300 + (-3.2) + (-6.8)$$

$$= 300 + ((-3.2) + (-6.8))$$

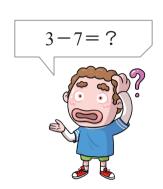
$$= 300 + (-10)$$

$$= 290$$

隨堂練習

計算下列各式的值:

$$(1)(-256)+478+256$$

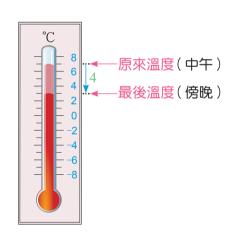

$$(2)(-49) + (-49.7) + 59.7$$

2 正負數的減法

▶ 減去正數

以下面的例子來說明:

<u>合歡山</u>某日早晨的氣溫為 3℃,中午的氣溫為 7℃。因此,中午的氣溫比早晨的氣溫高 4℃,可記為 7-3=4,即:


「最後溫度減原來溫度等於溫度的變化量」。

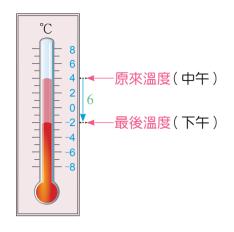
因此,若<u>合歡山</u>某日中午的氣溫為 7° C,傍晚的氣溫為 3° C,則溫度的變化量為 3-7。由溫度計的標示可知,傍晚的氣溫比中午的氣溫低 4° C,可記為

$$3 7=-4\cdots\cdots$$

另外從加法的計算可得:

$$3 + (-7) = -4 \cdots 2$$

若合歡山某日中午的氣溫為 4℃,下午的氣溫


為-2℃。因此,溫度的變化量可記為

$$(-2)$$
 - $4 = -6 \cdots \cdots (1)$

另外,從加法的計算可得:

$$(-2)+(-4)=-6\cdots 2$$

由①、②兩式可知
$$(-2)$$
—4= (-2) + (-4) 。

由上面的討論可知:減去一個正數就相當於加上這個正數的相反數。

自評 P44 第 2 題 (1)~(3)

計算下列各式的值:

$$(1)25-87$$

$$(2)(-23)-56$$

解
$$(1)25-87$$
 $(2)(-23)-56$ $= 25+(-87)$ ← 「減 87」 $= -(87-25)$ 看成「加 (-87) 」。 $= -62$ $(2)(-23)-56$ $= (-23)+(-56)$ ← 「減 56」 $= -(23+56)$ $= -79$

/ 隨堂練習

填入適當的數,以完成下列各式的計算:

$$(2)(-73)-19=(-73)+ =$$

🗅 減去負數

將一個數減去負數,例如: $4-(-2)\cdot(-2)-(-6)$,要如何計算呢? 可利用「最後溫度減原來溫度等於溫度的變化量」說明如下:

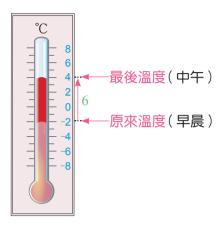
若合歡山某日早晨的氣溫為-2℃,中午的 氣溫為4℃。因此,溫度的變化量可記為

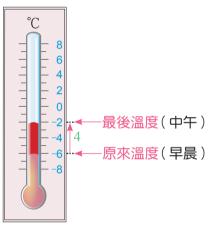
$$4-(-2)=6\cdots\cdots (1)$$

另外,從加法的計算可得:

$$4+ 2 = 6 \cdots 2$$

由①、②兩式可知 4<u>-(-2)</u>=4<mark>+2</mark>。


若合歡山某日早晨的氣溫為-6℃,中午的 氣溫為-2℃。因此,溫度的變化量可記為


$$(-2)-(-6)=4\cdots\cdots$$

另外,從加法的計算可得:

$$(-2) + 6 = 4 \cdots (2)$$

由①、②兩式可知
$$(-2)$$
— (-6) = (-2) +6。
$$\downarrow$$
「減 (-6) 」看成「 $\frac{1}{m}$ 6」

由上面的討論可知:減去一個負數就相當於加上這個負數的相反數。

例 減去負數

白評 P44 第 2 題(4)

計算下列各式的值:

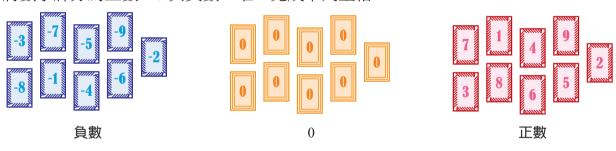
$$(1)6-(-15)$$

$$(2)(-25)-(-3)$$

/ 隨堂練習

填入適當的數,以完成下列各式的計算:

$$(2)(-11)-(-87)=(-11)+$$


$$(3)0 - (-13.5) = 0 + =$$

□▲正負數的減法

即減去一個數就相當於加上這個數的相反數。

探索活動 被減數與差的大小

將數字牌分為正數、0 與負數三堆,完成下列空格:

- (1) 先在心中想一個數,此數是。
- (2)從**正數**牌堆中任選一張牌,此牌的數為_____,則心中想的數減去此數的結果 心中想的數。(填大於、小於或等於)
- (3)從**負數**牌堆中任選一張牌,此牌的數為_____,則心中想的數減去此數的結果 心中想的數。(填大於、小於或等於)
- (4) 將心中想的數減去 的結果 心中想的數。(填大於、小於或等於)

事實上,若a為任意數,則(1)a-正數,其結果比a小;

(2)a-**負數**,其結果比 a大;

(3)a- 0,其結果與 a 相等。

3 正負數加減混合運算

▶ 正負數的加減

對於正負數加減,我們可使用計算機協助計算或驗算,以下介紹計算機的基本功能與操作方法。

1.計算機的基本功能:

- (1)按下 □ 可開啟電源; AC 可刪除螢幕顯示的數 值,並重新執行計算。
- (3)按下 ✓ 可更改螢幕中數值的正負號,例如:

輸入5 ₺ ,則顯示

2.計算機操作:

	算式	按法	螢幕顯示
(1)	(-9)+(-21)	9 + 21 🗠 =	□ 3€.
(2)	(-23.5)-56.3	23.5 🗠 🗕 56.3 =	
(3)	(-25)-(-3)	25 🛂 🗖 3 🛂 🚍	∞ 32.

不同計算機的介面與操作流程並不一致,使用時請參考相關說明書。

在正負數加減混合運算的過程中,可先轉化為「連加運算」,再運用加法交換律 與加法結合律調整運算次序,以提升運算效率。

例 正負數的加減混合運算

自評 P45 第 3 題(1)~(3)

計算下列各式的值:

$$(1)(-72)-18+43$$

$$(2)(-52)-23+52$$

$$\mathbf{R}(1)(-72)-18+43$$

$$=(-72)+(-18)+43$$

$$=(-90)+43$$

$$=-(90-43)$$

$$= -47$$

$$(2)(-52)-23+52$$

$$=(-52)+(-23)+52$$

$$=(-52)+52+(-23)$$

$$=0+(-23)$$

$$= -23$$

■ 輸入 72 🕊 🖃 18 🛨 43 🔳 🔻

螢幕顯示

▶ 隨堂練習

計算下列各式的值:

$$(1)51-(-27)-36$$

$$(2)(-39) + 12.7 - (-39)$$

如果正負數的加減運算中含有絕對值時,應優先計算絕對值內的值,再做其它 的渾算。

例 含絕對值的加減運算

白評 P45 第 3 題(4)

計算下列各式的值:

$$(1) \mid -15 \mid - \mid -20 \mid +13$$

$$(2)(-30)-|5-8|-(-2)$$

$$(2)(-30) - |5-8| - (-2)$$

$$= (-30) - |-3| + 2$$

$$= (-30) - 3 + 2$$

$$= -31$$

隨堂練習

計算下列各式的值:

$$(1)(-20) + |-8| + (-15)$$
 $(2) |7-8| - (-2) + (5-9)$

$$(2) \mid 7-8 \mid -(-2) + (5-9)$$

Thinking

10- | -6 | 和 10-(-6)的結果是否相同?請計算看看你想的是否正確。

例 (a+b)與-a-b 的比較

計算下列各式的值,並由其值比較(1)、(2)兩式有何關係?

$$(1) - (8+3)$$

$$(2) - 8 - 3$$

$$= -11$$

$$(2) - 8 - 3$$

$$=(-8)+(-3)$$

$$= -11$$

(1)、(2)兩式的值相等。

/ 隨堂練習

計算下列各式的值,並由其值比較(1)、(2)兩式有何關係?

$$(1) - (41 - 19)$$

$$(2) - 41 + 19$$

⇒ 去括號

如果 $a \cdot b$ 為任意兩數,則(1) -(a+b) = -a-b。

$$(2) - (a-b) = -a+b$$

a+b 的相反數為-(a+b),而-(a+b)=-a-b,因此

a+b 和-a-b 互為相反數。

同樣的,a-b的相反數為-(a-b),而-(a-b) = -a+b,因此

a-b 和-a+b 互為相反數。

去括號的運算

探索活動 去括號的運算

1. 計算(-25)+(70+30)與(-25)+70+30的值,並比較兩者是否相等。

(-25) + (70+30)	(-25) + 70 + 30	
解	解	□相等
		□不相等

2. 計算 40+(60-20)與 40+60-20 的值,並比較兩者是否相等。

40+(60-20)	40+60-20	
解	解	□相等
		□不相等

3. 計算 25-(50+30) 與 25-50-30 的值,並比較兩者是否相等。

25-(50+30)	25-50-30	
解	解	□相等
		□不相等

4. 計算(-40)-(70-20)與(-40)-70+20的值,並比較兩者是否相等。

(-40)-(70-20)	(-40)-70+20	□相等
解	解	
		□不相等

如果括號前為「十」,去括號時,括號內的每一個數都不用變號,

如果括號前為「一」,去括號時,括號內的每一個數都要變號。

$$\exists \exists a + (b+c) = a+b+c \; , \; a+(b-c) = a+b-c \; ,$$

$$a-(b+c) = a-b-c \; , \; a-(b-c) = a-b+c \; .$$

例11 去括號的運算

自評 P45 第 3 題 (5)~(6)

計算下列各式的值:

$$(1)298 + (961 + (-298))$$

$$(2)(-92)-(761-92)$$

$$\mathbf{m}$$
 (1)298+ [961+(-298)]

$$=298+961+(-298)$$

$$=298+(-298)+961$$

=961

$$(2)(-92)-(761-92)$$

$$=(-92)-761+92$$

$$= (-92) + (-761) + 92$$

$$= (-92) + 92 + (-761)$$

$$=0+(-761)$$

=-761

0

括號前為「+」,去括號時, 括號內的每一個數都不用變號。

0

括號前為「一」,去括號時,括號內的每一個數都要變號。

/ 隨堂練習

計算下列各式的值:

$$(1)283 + [(-614) - 283]$$

$$(2)1254 - (69 + 1254)$$

數線上兩點間的距離

在數線上點 A(a)到原點 O(0)的距離為 |a|,點 A(a)到點 B(b)的距離記作 \overline{AB} ,那麼該如何求得 \overline{AB} 呢?以下面的例子說明。

入 探索活動 數線上兩點間的距離

數線上兩點 $A(a) \cdot B(b)$ 的位置如下,完成下面表格:

	數線		a-b	b-a
兩點坐標 皆為正數	1 B ? A 0 1 4 4	3	4-1=3	1-4=-3
兩點坐標為異號數	B ? A A			
兩點坐標皆為負數	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

例如:數線上有A(-2)、B(-5)兩點,

₽離的表示

數線上 $A(a) \setminus B(b)$ 雨點間的距離可記作 \overline{AB} , $\overline{AB} = |a-b| = |b-a|$ 。

例12數線上兩點間的距離

自評 P45 第 4 題

數線上有A(2)、B(-5)、C(-7)三點,求 \overline{AB} 、 \overline{BC} 。

$$\mathbf{P}(1)\overline{AB} = |2-(-5)|$$

$$= |2+5|$$

$$= 7$$

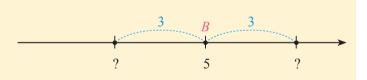
$$(2)\overline{BC} = |(-5) - (-7)|$$

$$= |(-5) + 7|$$

$$= 2$$

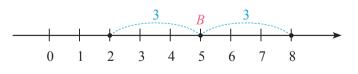
隨堂練習

數線上有A(-3)、B(-8)、C(9)三點,求 \overline{AB} 、 \overline{AC} 。


例13 與定點等距離的坐標

自評 P45 第 5 題

數線上有 $A \setminus B$ 兩點,其中B 點的坐標為5,且 $\overline{AB} = 3$,求A點的坐標。


思路分析

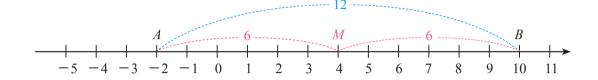
 $\overline{AB} = 3$,表示 $A \times B$ 兩點的距離為 3, A 點可能在 B 點的左邊或是右邊。

解 5+3=8 ← B(5)向右 3 個單位長。

所以 A 點的坐標為 8 或 2。

隨堂練習

數線上有 $A \times B$ 兩點,其中A點的坐標為-2,且 $\overline{AB} = 9.5$,求B點的坐標。


數線上有 $A \cdot B \cdot M$ 相異三點,如果M 點與 $A \cdot B$ 兩點的距離相等,則稱M 點 為 $A \cdot B$ 兩點的中點。

例 求中點坐標

自評 P45 第 6 題

若 A 點坐標為 -2 , B 點坐標為 10 , M 點為 A 、 B 兩點的中點 , 求 M 點坐標 。

解

$$\overline{AB} = |(-2) - 10| = 12$$

因為M點為 $A \setminus B$ 兩點的中點,

所以
$$\overline{AM} = \overline{BM} = 12 \div 2$$

=6

由 A 點坐標往右 6 個單位長可得(-2)+6=4,即 M 點坐標為 4。

M 點坐標也可以由 B 點往左 6 個單位長求得,即 10-6=4。

/ 隨堂練習

如果A(-25)、B(-5)為數線上兩點,求A、B 兩點的中點坐標。

❶加法交換律

如果 $a \cdot b$ 為任意兩數,則 a+b=b+a。

2加法結合律

如果 $a \cdot b \cdot c$ 為任意三數,則(a+b)+c=a+(b+c)。

囫
$$(7+2)+(-4)=7+[2+(-4)]$$

③正負數的減法

減去一個數就相當於加上這個數的相反數。

例
$$(1)(-5)-9=(-5)+(-9)$$
相反數
$$(2)8-(-3)=8+3$$
相反數

4 去括號

- (1)如果括號前為「+」,去括號時,括號內的每一個數都不用變號。
- (2)如果括號前為「-」,去括號時,括號內的每一個數都要變號。

$$(1) (-6) + (9+2) = (-6) + 9+2$$
$$(2)4 - (3+2) = 4-3-2$$

⑤數線上兩點間的距離

數線上,A(a)、B(b)兩點間的距離記作 \overline{AB} , $\overline{AB} = |a-b| = |b-a|$ 。

Ø 如果
$$A(4) \cdot B(-1)$$
為數線上兩點,則 $\overline{AB} = |4-(-1)| = 5$ 。

1)計算下列各式的值:

(1)(-27) + (-83)

$$(2)(-37)+25$$

$$(3)(-37)+68$$

$$(4)115 + (-79)$$

$$(5)6.9+(-1.9)$$

$$(6)(-81)+81$$

2計算下列各式的值:

(1)25-38

$$(3)13 - |-83|$$

$$(4)57-(-25)$$

(2)(-85)-85

3計算下列各式的值:

課 P35~39 例 8~11

$$(1)(-21)-11+30$$

$$(2)42-(-75)+(-75)$$

$$(3)(-36)-(-14)-5$$

$$(4) \mid (-21) - 7 \mid + (-11)$$

$$(5)75 - (823 + 75)$$

$$(6)(532-123)-(32-123)$$

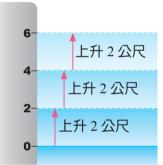
4 數線上有A(6)、B(-9)、C(-11.6)三點,求 \overline{AB} 、 \overline{AC} 、 \overline{BC} 。

課 P41 例 12

⑤數線上有 $A \times B$ 兩點,其中A 點坐標為 18,且 $\overline{AB} = 30$,求B 點的坐標。 課 P41 例 13

⑥已知數線上A點坐標為3,B點坐標為-9,求A、B 兩點的中點坐標。 課 P42 例 14

1-3 正負數的乘除


正負數的乘法

臺灣每年約在 5、6 月間進入梅雨期,7 月到 10 月則為颱風季節,每年的 10 月到隔年 4 月則為缺水期,節約用水可避免缺水的情況發生。接下來,我們從水庫在梅雨期與缺水期的水位變化說明正負數的乘法運算。

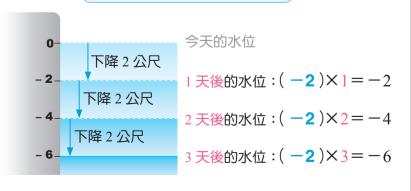
正數×正數

梅雨期間,水庫的水位 平均每天上升 2 公尺, 因此將水位的每日變化 量記為+2 公尺。以今 天的水位為基準,水位 變化如右:

將1天後記為「+1」天。

3 天後的水位: 2×3=6

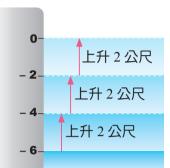
2 天後的水位: 2×2=4


1 天後的水位: 2×1=2

今天的水位

負數×正數

缺水季節時,水庫的水 位平均每天下降 2 公 尺,因此將水位的每日 變化量記為-2 公尺。 如果以今天的水位為基 準,水位變化如右:


將1天後記為「+1」天。

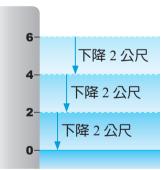
正數×負數

梅雨期間,水庫的水位 平均每天上升 2 公尺, 因此將水位的每日變化 量記為+2 公尺。如果 以今天的水位為基準, 水位變化如右:

將1天前記為「-1」天。

今天的水位

1 天前的水位: $2 \times (-1) = -2$


2 天前的水位: $2 \times (-2) = -4$

3 天前的水位: $2 \times (-3) = -6$

負數×負數

缺水季節時,水庫的水 位平均每天下降 2 公 尺,因此將水位的每日 變化量記為-2 公尺。 如果以今天的水位為基 準,水位變化如右:

將1天前記為「-1」天。

- 3 天前的水位: $(-2) \times (-3) = 6$
- 2 天前的水位:(-2)×(-2)=4
- 1 天前的水位: $(-2) \times (-1) = 2$
- 今天的水位

□▲正負數的乘法

- 1.(正數)×(正數)得到正數
- 2.(負數)×(負數)得到正數
- 兩個同號數相乘,結果為正數。
- 3. (負數)×(正數)得到負數]
- 4.(正數)×(負數)得到負數
- 兩個異號數相乘,結果為負數。

兩數相乘時,可先判別答案的正負號,再計算其結果。

例 正負數的乘法

求下列各式的值:

$$(1)25 \times 6$$

$$(3)5 \times (-19)$$

$$(2)(-31)\times 4$$

$$(4)(-22)\times(-6)$$

$\mathbf{H}(1)25 \times 6 = 150$

$$(2)(-31)\times 4 = -(31\times 4) = -124$$

$$(3)5\times(-19) = -(5\times19) = -95$$

$$(4)(-22)\times(-6) = +(22\times6) = 132$$

$$(+)\times(+)=(+)$$

 $(-)\times(+)=(-)$
 $(+)\times(-)=(-)$

 $(-) \times (-) = (+)$

/ 隨堂練習

求下列各式的值:

$$(1)5 \times 17$$

$$(2)(-23) \times 8$$

$$(3)13 \times (-7)$$

$$(4)(-21)\times(-10)$$

含有 $\lceil 1 \times -1$ 或 $0 \rfloor$ 的乘法,具有下列特件:

● 1 與任何數的乘積都等於這個數本身。

例如: $1 \times 6 = 6$, $1 \times (-2) = -2$ 。

2 - 1 與任何數的乘積都等於這個數的相反數。

例如:
$$(-1)\times 7 = -(1\times 7) = -7$$
, $(-1)\times (-8) = +(1\times 8) = 8$ 。

30 與任何數的乘積都是0。

例如:
$$0\times3=0$$
, $3\times0=0$, $0\times(-9)=0$, $(-9)\times0=0$ 。

☼ 含 1 、 −1 或 0 的乘法

如果
$$a$$
 為任意數,則
$$\begin{cases} (1)1\times a=a\times 1=a\\ (2)(-1)\times a=a\times (-1)=-a\\ (3)0\times a=a\times 0=0 \end{cases}$$

🌠 隨堂練習

求下列各式的值:

$$(1)(-1)\times(-14) = \underline{\hspace{1cm}} \circ \qquad (2)(-20)\times 0 = \underline{\hspace{1cm}} \circ$$

$$(2)(-20)\times 0 = _{---}$$

■ 補給站 數字 0 的故事

在人類的歷史上,0 這個數的概念比其他的數更晚出現,因為古代的人認為 0 就是空無, 並不需要有 0 這樣的數。

0 的表示記號之所以重要,在於它可以用來確定各數字的位值。例如:古代 的記數,1個一百加上2個十及3個一的和會以123記錄;而1個一百加上3個 一的和會以 1 3 記錄,很容易與 13 混淆。有了 0 之後,可以記為 103,就不會 混淆了。

例 數的連乘

自評 P61 第 1 題 (1)

求下列各式的值:

$$(1)(-2)\times 3\times 3$$

$$(3)(-2)\times(-2)\times(-2)$$

$$(2)(-1)\times 2\times (-3)$$

$$(4)(-3)\times 0\times (-31)$$

$$\mathbf{m}(1)(-2)\times 3\times 3$$

$$=(-6)\times3$$

$$=-18$$

$$(2)(-1)\times 2\times (-3)$$

$$=(-2)\times(-3)$$

$$=6$$

$$(3)(-2)\times(-2)\times(-2)$$

$$=4 \times (-2)$$

$$= -8$$

$$(4)(-3)\times 0\times (-31)$$

$$=0 \times (-31)$$

$$=0$$

0 乘以任何數其值均為0。

□ 正負數的連乘

- 1. 偶數個負數相乘,其乘積為正數。
- 2.奇數個負數相乘,其乘積為負數。
- 3. 在連乘的算式中,如果有任一個數為 0,其乘積為 0。

╱▲ 隨堂練習

自評 P61 第 2 題

已知 2×3×4×5=120,計算下列各式的值:

$$(1)(-2)\times 3\times 4\times 5=\underline{\hspace{1cm}} \circ$$

$$(2)2\times(-3)\times(-4)\times5=\underline{\hspace{1cm}} \circ$$

$$(3)2\times(-3)\times(-4)\times(-5) =$$

$$(4)(-2)\times(-3)\times(-4)\times(-5) =$$

$$(5)(-2)\times 3\times 0\times (-4)\times (-5) =$$

▶ 乘法交換律

兩個正數相乘時合乎乘法交換律,例如:8×9=9×8。那麼含有負號的兩數相乘時,是否仍合乎乘法交換律呢?

②因為
$$(-5)\times(-3)=15$$
, $(-3)\times(-5)=15$
所以 $(-5)\times(-3)=(-3)\times(-5)$ 。

由1、2可知,任意兩數相乘合乎乘法交換律。

◎▲乘法交換律

如果 $a \cdot b$ 為任意兩數,則 $a \times b = b \times a$ 。

▶ 乘法結合律

國小時學過,三個正數連乘時,先乘前面兩數或先乘後面兩數,結果是相等的,也就是合乎乘法結合律,例如:(2×3)×5=2×(3×5)。那麼含有負號的三數連乘時,是否也合乎乘法結合律呢?

因為
$$[(-2)\times(-3)]\times(-5) = (2\times3)\times(-5) = -(2\times3\times5)$$
,
 $(-2)\times[(-3)\times(-5)] = (-2)\times(3\times5) = -(2\times3\times5)$,
所以 $[(-2)\times(-3)]\times(-5) = (-2)\times[(-3)\times(-5)]$ 。

由上述可知,對於任意數連乘時,無論先算哪兩數,其連乘積仍然相等,即任意數連乘合乎乘法結合律。

◎▲乘法結合律

如果 $a \cdot b \cdot c$ 為任意三數,則 $(a \times b) \times c = a \times (b \times c)$ 。

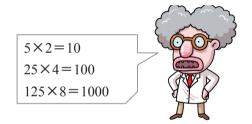
第一章 數與數線

在連乘的計算過程中,利用乘法交換律或乘法結合律調整運算次序,可以提升 渾算效率。

例 利用交換律或結合律解題

白評 P61 第 1 題 (2)

計算下列各式的值:


$$(1) (-25) \times (-17) \times 4$$

$$(2)(-125) \times 1.3 \times 8$$

 $\mathbb{R}(1)(-25)\times(-17)\times4$

$$= (-100) \times (-17)$$

=1700

 $(2)(-125) \times 1.3 \times 8$

$$= (-1000) \times 1.3$$

$$=-1300$$

╱ 隨堂練習

計算下列各式的值:

$$(1)20 \times 31 \times (-50)$$

$$(2)(-125) \times 69 \times (-4) \times 2$$

2 正負數的除法

國小時學過乘法與除法之間的關係,例如:5×3=15,則 15÷3=5。 以下將利用此關係說明負數除法的意義。

▶ 負數÷正數

由
$$(-2)\times 3=-6$$

可得 $(-6)\div 3=-2$,又 $-(6\div 3)=-2$
所以 $(-6)\div 3=-(6\div 3)$

D 正數÷負數

由
$$(-5)\times(-3)=15$$

可得 $\underbrace{15\div(-3)}_{}=-5$,又 $\underbrace{-(15\div3)}_{}=-5$
所以 $15\div(-3)$ = $-(15\div3)$

▶ 負數÷負數

由
$$8 \times (-9) = -72$$

可得 $(-72) \div (-9) = 8 \cdot$ 又 $\frac{72 \div 9}{\checkmark} = 8$
所以 $(-72) \div (-9) = 72 \div 9$

□▲正負數的除法

1.(正數)÷(正數)得到正數 2.(負數)÷(負數)得到正數 1.(正數)÷(負數)得到正數 1.(正數)÷(重數)得到正數

3.(正數)÷(負數)得到負數 4.(負數)÷(正數)得到負數 和個異號數相除,結果為負數。

又 $0\div 2=0$, $0\div (-5)=0$, 因此可得:

0除以任何一個不等於0的數,結果都是0。

◎ ★被除數為 0

如果 a 是不等於 0 的數,則 $0 \div a = 0$ 。

例4 上負數的除法

自評 P61 第 1 題 (3)

求下列各式的值:

$$(1)(-3.6) \div 9$$

$$(2)(-42) \div (-6)$$
 $(3)0 \div (-9)$

$$(3)0 \div (-9)$$

$$\mathbf{m}(1)(-3.6) \div 9$$

$$(2)(-42) \div (-6)$$

$$(3)0 \div (-9) = 0$$

$$=-(3.6 \div 9)$$

$$= + (42 \div 6)$$

=-0.4

=7

0 除以任何一個不等於 0的數,其商為0。

✓ 隨堂練習

求下列各式的值:

$$(1)(-81) \div (-3)$$
 $(2)36 \div (-4)$ $(3)0 \div (-24)$

$$(2)36 \div (-4)$$

$$(3)0 \div (-24)$$

= •

關於數的乘除運算,我們也可以使用計算機協助計算或驗算,操作方法如下:

	算式	按法	螢幕顯示
(1)	$(-2.2) \times 6$	2.2 × 6 =	- (3.2
(2)	$(-42) \div (-6)$	42 🔀 \div 6 🔁 🚍	DEG .

正負數的四則運算

含有負數的四則運算,其優先順序與正數的四則運算相同,如果式子中含有 加、减、乘、除混合運算,要由左而右,先算乘(除),後算加(減),但有括號時, 則優先計算括號內的算式。

例 正負數的四則運算

自評 P61 第 3 題

求下列各式的值:

$$(1)5\times(-3)-(-8)$$

$$(2)51-21\div(2-9)$$


$$|\mathbf{m}|(1)5 \times (-3) - (-8)$$

$$= (-15) - (-8)$$

$$= (-15) + 8$$

$$= -(15 - 8)$$

$$= -7$$

✓ 隨堂練習

自評 P61 第 3 題 (4)

求下列各式的值:

$$(1)(-30) \div 5 \times 2$$

$$(2)(-30) \div (5 \times 2)$$

$$(1)(-30) \div 5 \times 2$$
 $(2)(-30) \div (5 \times 2)$ $(3)39 - (-4) \times (-25)$

在國小時曾經學過正數的運算合乎分配律,例如:

$$(5+6)\times 7=5\times 7+6\times 7$$
, $7\times (5+6)=7\times 5+7\times 6$,

即
$$(a+b)\times c=a\times c+b\times c$$
, $c\times (a+b)=c\times a+c\times b$ 。

含有負號的運算是否也合乎分配律呢?

入 探索活動 乘法對加、減法的分配律

1. 計算 $12 \times [(-5) + 3]$ 與 $12 \times (-5) + 12 \times 3$ 的值,並比較兩者是否相等。

	$12 \times ((-5) + 3)$	$12 \times (-5) + 12 \times 3$	
解		解	□相等
			□不相等

2. 計算 $[(-8)-6] \times 3$ 與 $(-8) \times 3-6 \times 3$ 的值,並比較兩者是否相等。

$((-8)-6)\times 3$	$(-8) \times 3 - 6 \times 3$	
解	解	□相等
		□不相等

3. 計算[10+(-3)]×(-6)與10×(-6)+(-3)×(-6)的值, 並比較兩者是否相等。

$(10+(-3))\times(-6)$	$10 \times (-6) + (-3) \times (-6)$	
解	解	□相等
		□不相等

4. 計算 5×[2-(-8)]與 5×2-5×(-8)的值,並比較兩者是否相等。

5×[2-(-8)]	$5\times2-5\times(-8)$	□相等
P	解	□不相等

□ 乘法分配律

如果 a b c 為任意三數,則

$$(1)(a+b)\times c = a\times c + b\times c \quad , \quad c\times (a+b) = c\times a + c\times b \quad .$$

$$(2) (a-b) \times c = a \times c - b \times c \quad (a-b) = c \times a - c \times b \quad \circ$$

/ 隨堂練習

完成下列空格:

$$(1)(50+7)\times 13$$

$$=50\times13+7\times$$

$$=650+$$

$$(2)25 \times (60 - 3)$$

$$=25\times60-25\times$$

$$=1500-$$

Thinking

1.(80+20)÷4的值與80÷4+20÷4的值是否相等?

 $2.80 \div [(-2) + 10]$ 的值與 $80 \div (-2) + 80 \div 10$ 的值是否相等?

由 Thinking 可知:如果 $a \cdot b \cdot c$ 為任意三數,且除數不為 $0 \cdot$ 則

- $(1)(a+b) \div c = a \div c + b \div c \circ$
- (2) $a \div (b+c) \neq a \div b + a \div c$

例 正負數的四則運算

自評 P62 第 4 題

求下列各式的值:

$$(1)(-37) \times 99$$

$$(2)(-14.7)\times62+(-14.7)\times38$$

 \mathbf{m} (1)(-37)×99

$$=(-37)\times100-(-37)\times1$$

$$= (-3700) + 37$$

=-3663

₩ 利用計算機驗算:

輸入37 ★ × 99 ■ ,

螢幕顯示

 $(2)(-14.7)\times62+(-14.7)\times38 \leftarrow c\times a+c\times b=c\times(a+b)$

$$=(-14.7)\times(62+38)$$

$$= (-14.7) \times 100$$

=-1470

在四則運算過程中,

適時運用分配律,可 以提升運算的效率。

✓ 隨堂練習

求下列各式的值:

$$(1)(-14) \times 299$$

$$(2)(-39)\times4.5+(-39)\times5.5$$

例 正負數的應用問題

自評 P62 第 5 題

1 的點數是

紅色,3和

5的點數是

黑色。

一個骰子的 6 個面分別有 1 到 6 點,其中 1 點及 4 點為紅色,其他點數則為黑 色。安妤與暉翔各丟擲骰子三次,約定紅色點數的得分是點數的-3倍,黑色 點數的得分是點數的 2 倍。如果安妤投出的點數是 2、4、4,暉翔投出的點數 是1、3、5,則安妤的總分比暉翔的總分多或少幾分?

解安妤投出的點數總分為

$$=(-8)+(-12)$$

$$= -20$$

暉翔投出的點數總分為

$$1\times(-3)+3\times2+5\times2$$

$$=(-3)+6+10$$

$$=3+10$$

$$=13$$

$$(-20)-13=-33$$

所以安妤的總分比暉翔的總分少33分。

✓ 隨堂練習

乙安設計一個在數線上行走的機器人,當按下按鍵 A 時,機器人會往正向走 3 個 單位長的距離;按下按鍵 B 時,機器人會往負向走 2 個單位長的距離。如果機器 人一開始的位置在 P(-7),且乙安先按 12 次按鍵 A,再按 7 次按鍵 B 後,機器 人的位置在Q點,求Q點的坐標。

❶正負數的連乘

(1) 偶數個負數相乘,其乘積為正數。

(2)奇數個負數相乘,其乘積為負數。

2正負數的除法

(1)兩個同號數相除,其結果為正數。

(2)兩個異號數相除,其結果為負數。

$$(-18) \div 3 = -6 \cdot 18 \div (-3) = -6$$

③乘法交換律

如果 $a \cdot b$ 為任意兩數,則 $a \times b = b \times a$ 。

例
$$9 \times (-15) = (-15) \times 9$$

4 乘法結合律

如果 $a \cdot b \cdot c$ 為任意三數,則 $(a \times b) \times c = a \times (b \times c)$ 。

$$[18 \times (-25)] \times 4 = 18 \times ((-25) \times 4)$$

⑤乘法對加、減法的分配律

如果 $a \cdot b \cdot c$ 為任意三數,則:

$$(1)(a+b)\times c = a\times c + b\times c \cdot c \times (a+b) = c\times a + c\times b$$

$$(2)(a-b)\times c = a\times c - b\times c \cdot c\times (a-b) = c\times a - c\times b$$

$$99 \times 25 = (100-1) \times 25 = 100 \times 25 - 1 \times 25$$

1)計算下列各式的值:

$$(1)(-2)\times(-3)\times11$$

$$(4)(-36) \div 4 \times (-3)$$

$$(1)(-5)\times(-6)\times7\times(-8)\times9=\underline{\hspace{1cm}} \circ$$

$$(2)(-5)\times(-6)\times(-7)\times0\times(-8)\times(-9) =$$

3計算下列各式的值:

課 P55 例 5

$$(1)(-81) \div 3 - 6$$

$$(2)35+25\div(-7+2)$$

4計算下列各式的值:

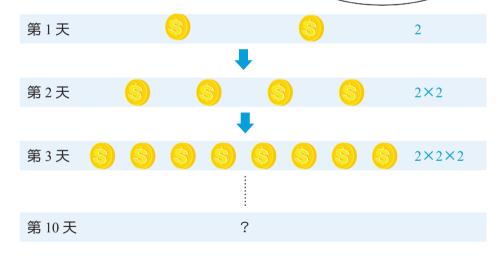
課 P58 例 6

$$(1)15\times(-199)$$

$$(2)(-39)\times 11 + (-39)\times 79 + 39\times (-10)$$

⑤如圖,將臺灣高鐵里程畫在數線上,若以南隧道松山出口為原點,板橋站的里程 Ⅲ為 13.12 公里,南港站的里程為 −3.3 公里。假設臺灣高鐵的票價是每公里 4.13 元,使用計算機計算從板橋站到南港站的票價應該是多少元?(四捨五入取至十 位,例如: 213 元四捨五入為 210 元, 217 元四捨五入為 220 元。) 課 P59 例 7

1-4指數記法與科學記號


指數記法

妳想要什麽樣的 生日禮物啊?

請在生日那天給我2個金 幣,接下來每一天都給我

請問第10天,公主會得到多少個金幣呢?

第 10 天所得到的金幣有 2×2×2×2×2×2×2×2×2×2=1024(個)

10 個 2 相乘

為了讀寫的方便,可以將連續 10 個 2 相乘簡記成 210,讀作「二的十次方」。 在數學上,當同一個數 a 連乘 m 次時, 可以簡記成 a^m 的形式,讀作 a 的 m 次 方」,其中a稱為底數,m稱為指數。

底數

64

又如 $(-3)\times(-3)\times(-3)\times(-3)$,可以簡記成 $(-3)^4$,其中-3 為底數,

4 為指數。

當指數為1時,通常省略不寫。例如:51會記為5。

當底數為 0 時, 0^1 、 0^2 、 0^3 、……、 0^n 的值都是 0。

當底數為 1 時, 1^1 、 1^2 、 1^3 、……、 1^n 的值都是 1。

万 隋堂練習

1.以指數記法簡記下列各式:

$$(1)7 \times 7 \times 7 \times 7 \times 7 = (2)(-6) \times (-6) \times (-6) = (-6) \times (-6) \times (-6) \times (-6) = (-6) \times ($$

2. 求下列各式的值:

 $(1)2^3 = 2 \times 2 \times 2 =$

c

例 指數的值

白評 P74 第 1 、 2 題

求下列各式的值:

$$(1)(-4)^3$$

$$(2)(-4)^4$$

$$(3) - 4^4$$

$$\mathbb{F}(1)(-4)^3 = (-4)\times(-4)\times(-4) = -64$$

$$(2)(-4)^4 = (-4)\times(-4)\times(-4)\times(-4) = 256$$

$$(3) - 4^4 = -(4 \times 4 \times 4 \times 4) = -256$$

	算式	按法	螢幕顯示
(2)	$(-4)^4$	4 + x 4 =	258.
(3)	-4^{4}	4 x 4 = +	- 256.

使用計算機計算 (-4)4 時,需先 輸入底數 4 ★ 。

╱ 隋堂練習

求下列各式的值:

在 1-3 節已經學過:在連乘的算式中,如果沒有一個數為 0,算式中有偶數個負 數相乘,其乘積為正數;有奇數個負數相乘,其乘積為負數。因此, $\frac{\dot{\mathbf{g}}}{\mathbf{g}} a < 0$ 時,如 果 m 為偶數,則 a^m 為正數;如果 m 為奇數,則 a^m 為負數。

在四則運算的混合算式中,如果含有指數的運算,則應先做完指數的運算,然 後由左而右,先算乘除,後算加減。當有括號時,應優先計算括號內的算式。

例 含指數的四則運算

白評 P74 第 3 題

求 $216 \div (-2^2) + (-5)^3$ 的值。

$$216 \div (-2^2) + (-5)^3$$

$$= 216 \div (-4) + (-125)$$

$$= (-54) + (-125)$$

$$= -179$$

▶ 隨堂練習

$$求(-3)^2+(-2)^3\times 2$$
的值。

る 探索活動 比較大小 ₩

使用計算機計算,並回答下列問題:

(1)①任意寫下一個大於 1 的數 $a \cdot a = ____$ 。

$$(2)a^3 =$$
, $a^4 =$, $a^5 =$

- ③比較 $a^3 \cdot a^4 \cdot a^5$ 的大小關係: a^3 a^4 $a^5 \circ (填>或<)$
- (2)①任意寫下一個數滿足 $0 < b < 1 \cdot b =$ 。

$$(2)b^3 =$$
_____ , $b^4 =$ ____ , $b^5 =$ ____ \circ

③比較 $b^3 \cdot b^4 \cdot b^5$ 的大小關係: $b^3 \qquad b^4 \qquad b^5 \circ (填>或<)$

□□■利用指數比較大小

- 1如果 a 是比 1 大的正數時,n 愈大,則 a^n 的值會愈大。
- 2.如果 b 是比 1 小的正數時, n 愈大, 則 b^n 的值會愈小。

╱ 隨堂練習

1. 設 $a = (1.1)^{100}$, $b = (1.1)^{101}$, $c = (1.1)^{102}$,比較 $a \cdot b \cdot c$ 的大小。

2. 設 $a = (0.9)^{24}$, $b = (0.9)^{25}$, $c = (0.9)^{26}$, 比較 $a \cdot b \cdot c$ 的大小。

1.01 法則 1.01³⁶⁵≒37.8

0.99 法則 0.99³⁶⁵≒0.03

自然 💬 水生植物的增生與防災

臺灣每年五月到十一月期間,梅雨及颱風帶來豐沛的雨量,這些豐沛的雨量是重要的水資源來源,卻也容易發生水患災害。因此需加強排水系統清淤、截流站安全檢查、抽水機具維護及溪流河川疏濬等防汛整備工作,以降低水患產生的災害程度。

而在各河流中下游水域、池塘及溝渠中常見的布袋蓮及水芙蓉等水生植物,因為增生快速,在洪水期間常會阻礙河道,所以在防汛整備時會特別加強 這些水生植物的清理。

這些水生植物的增生速度有多快呢?以布袋蓮為例,在適合環境下,布袋蓮大約每 12 天即可快速生長蔓延繁殖為 2 倍,也就是說在 60 天的時間,布袋蓮約可繁殖成原來株數的 $2^5=32$ 倍。

如果布袋蓮每 12 天繁殖為 2 倍,那麼 240 天會繁殖為 2²⁰ 倍,想 知道 2²⁰ 的數值有多大,我們可以使用計算機來協助計算。

輸入 2 ☎ 20 = , 螢幕顯示

1048576.

② 想一想,如果有一個池塘的布袋蓮每 12 天繁殖為 2 倍,且在 120 天會長滿整個池塘。那麼這個池塘有一半的區域長滿布袋蓮,需要多少的時間呢?

2 科學記號

國小曾學過位值與位名,在學過指數記法後,我們將以10的次方來表示位值。

10 的次方與位值

相鄰位值的關係如下表,其中 $1000=10^3$, $100=10^2$, $10=10^1$,那麼其它位值如何以 10 的次方表示呢?

位名	千位	百位	十位	個位	十分位	百分位	千分位
位值	1000	100	10 ×	1	$ \begin{array}{cccc} & 0.1 & \times \\ & 0.1 & \times \\ & 0.1 & \times \\ & 0.1 & \times \\ \end{array} $	$\begin{array}{c c} 0.01 & \times \\ \hline 0.1 & (=\frac{1}{100}) & \times \end{array}$	0.001 $(=\frac{1}{1000})$
10 的	103 欠方	10^2	10^{1}	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³

觀察上表中「位值」與「10 的次方」的關係,可以發現:當位值變為 10 倍時,10 的次方會增加 1;當位值變為 0.1 倍時,10 的次方會減少 1。因為 1 是 10 的 0.1 倍,我們規定 $1=10^0$ 。同理,規定 $0.1=10^{-1}$, $0.01=10^{-2}$, $0.001=10^{-3}$ 。

事實上,如果 m 為正整數,則 $(0.1)^m = 10^{-m}$ 。例如: $0.000001 = (0.1)^6 = 10^{-6}$ 。

▶ 隨堂練習

- 1. 以底數為 10 的指數記法表示 0.00000001。
- 2. 以小數表示 10⁻⁷。

科學上常見的長度單位也會以底數為 10 的指數記法表示。

例如:1毫米(mm)=0.001公尺= 10^{-3} 公尺,

1 微米(μm) = 0.000001 公尺 = 10^{-6} 公尺,

 $1 \, \text{奈米}(nm) = 0.000000001 \, \text{公尺} = 10^{-9} \, \text{公尺}$ 。

認識科學記號

科學新聞 Hanlin 時報

史上最大病毒 潘朵拉病毒

法國科學家於 2013 年發現有史以來最大的巨型病毒,名為 潘朵拉病毒(Pandoravirus),一般病毒的直徑約在 10 奈米 ~500 奈米之間,而潘朵拉病毒的直徑達 1 微米,也就是 1000 奈米。

在表示長度的單位中,1000 奈米=1 微米=0.000001 公尺= 1×10^{-6} 公尺,其 中 1×10^{-6} 是科學記號表示法,可以簡記為 10^{-6} ; 2.25 億公里=225000000 公里= 2.25×10⁸ 公里,其中 2.25×10⁸ 是科學記號表示法。

像 0.000001、225000000 這樣很小或是很大的數,科學家常會用指數的記法記錄 為 $a \times 10^m$, 其中 $1 \le a < 10$, m 為整數 , 這樣的記法稱為此數的科學記號表示法 , 限 制 a 的範圍是為了表示法的唯一性。

像 72.4×10¹⁸ 及 0.47×10¹⁵ 都不是科學記號表示法, 因為 72.4 比 10 大, 而 0.47 比 1 小。

符號「 $1 \le a < 10$ 」表示 a的值大於或等於 1(其 中一種情形成立就可 以)且a的值小於10。

☑ 隋堂練習

判別下面哪些數是以科學記號表示法記錄。 $0.9 \times 10^5 \cdot 2.75 \times 10^{-9} \cdot 3 \times 10^8 \cdot 7.3 \times 2^{10} \cdot 16 \times 10^{-23}$

例 科學記號表示法

自評 P74 第 4 題

以科學記號表示法記錄下列各數:

(1) 120000

(2) 0.00000037

 $(3)\frac{3}{100000}$

 \mathbf{m} (1) 120000 = 1.2 × 100000

6位數 1後面有5個0

$$=1.2\times10^{5}$$

1 2 0 0 0 0

3在小數點後第7位

 $(2)0.00000037 = 3.7 \times 0.0000001$

 $=3.7\times(0.1)^7$

 $=3.7\times10^{-7}$

0 .0 0 0 0 0 3 7

 $(3)\frac{3}{100000} = 3 \div 100000$

3在小數點後第5位

=0.00003

 $=3\times0.00001$

 $=3 \times 10^{-5}$

╱ 隨堂練習

以科學記號表示法記錄下列各數:

(1) 30000000

(2) 0.000002

 $(3) \frac{7}{1000000}$

例4 科學記號轉換

白評 P75 第 5 題

- 1. 將 3.14×10⁷ 化成整數的形式,並判別它是幾位數。
- $2. 將 5.3 \times 10^{-6}$ 化成小數的形式,並判別它從小數點後第幾位開始出現不是 0.00 的數字。
- 解 1. 因為 3.14×10⁷=3.14 × 10000000=31400000 1後面有7個0

所以 3.14×107 是 8 位數。

2. 因為 5.3×10⁻⁶=5.3×0.000001=0.0000053 1在小數點後第6位

所以 5.3×10⁻⁶ 從小數點後第 6 位開始出現不是 0 的數字。

隨堂練習

1. 將 7.68×10⁴ 化成整數的形式,並判別它是幾位數。

2. 將 2.345×10^{-9} 化成小數的形式,並判別它從小數點後第幾位開始出現不 是 0 的數字。

由 例4 與 / 隨堂練習 可以發現:

當n是正整數,

- (1)如果某數的科學記號表示法為 $a \times 10^n$,則該數的整數部分是(n+1)位數。
- (2) 如果某數的科學記號表示法為 $a \times 10^{-n}$,則該數從小數點後第 n 位開始出現不是 0 的數字。

例 科學記號的比較大小

白評 P75 第 6 題

比較各小題兩數的大小關係:

 $(1)3.2 \times 10^{12} \cdot 1.7 \times 10^{12}$ $(2)6.1 \times 10^{8} \cdot 9.35 \times 10^{7}$ $(3)9.5 \times 10^{-5} \cdot 8.7 \times 10^{-3}$

解(1)因為 3.2×10¹²、1.7×10¹² 都是 13 位數,且 3.2>1.7, 所以 3.2×10¹²>1.7×10¹²。

- (2)因為 6.1×10⁸ 是 9 位數, 9.35×10⁷ 是 8 位數, 所以 6.1×10⁸>9.35×10⁷。
- (3)因為 9.5×10^{-5} 從小數點後第 5 位開始出現不是 0 的數字, 8.7×10^{-3} 從小數點後第 3 位開始出現不是 0 的數字, 所以 $9.5 \times 10^{-5} < 8.7 \times 10^{-3}$ 。

由 例 5 可以發現:

比較兩個以科學記號表示的數 $a \times 10^m$ 與 $b \times 10^n$ 的大小,

(1)如果m>n,則 $a\times 10^m>b\times 10^n$ 。

(10的次方越大,其值越大)

(2)如果 m=n,目 a>b,則 $a\times 10^m>b\times 10^n$ 。

比較兩個科學記號 $a \times 10^m$ 與 $b \times 10^n$ 的大小:

- (1) 先比較 m 與 n 的大小;
- (2)再比較 a 與 b 的大小。

/ 隨堂練習

比較下列各小題中兩數的大小關係:

 $(1)7.53 \times 10^5$ 5.49×10^6

 $(2)2.45 \times 10^{-4} \qquad 7.829 \times 10^{-4}$

❶指數記法

同一個數 a 連乘 m 次時,可以簡記成 a^m 的形式,讀作 $\lceil a$ 的 m 次方」,其中 a 為 底數,m 為指數。

2科學記號表示法

以 $a \times 10^m$ 表示一個數,其中 $1 \le a < 10$,m 為整數,此種記錄方法稱為科學記號表示法。

囫(1)17500000 以科學記號可表示為 1.75×107。

$$1 \le 1.75 < 10$$

(2) 0.00023 以科學記號可表示為 2.3×10⁻⁴。

$$1 \le 2.3 < 10$$

(1) 幾位數的判別:n 是正整數,如果某數的科學記號表示法為 $a \times 10^n$,則該數的整數部分是(n+1)位數。

Ø 3.5×10⁹ 是 10 位數。

- (2)小數點後第幾位不為 0 的判別:n 是正整數,如果某數的科學記號表示法為 $a \times 10^{-n}$,則該數從小數點後第 n 位開始出現不是 0 的數字。
 - 例 2.8×10^{-6} 從小數點後第 6 位開始出現不是 0 的數字。

4 科學記號的比較大小

比較兩個以科學記號表示的數 $a \times 10^m$ 與 $b \times 10^n$ 的大小,

(1)如果 m > n,則 $a \times 10^m > b \times 10^n$ 。 (10 的次方越大,其值越大)

例
$$2.3 \times 10^7 > 8.5 \times 10^4$$

$$(2)$$
如果 $m=n$,且 $a>b$,則 $a\times 10^m>b\times 10^n$ 。

$$\bigcirc 7.2 \times 10^5 > 3.6 \times 10^5$$

1計算下列各小題的值:

 $(1)(-3)^5 = ____ \circ$

$$(2)(-5)^4 = _{---}$$
 °

2計算下列各式的值:

 $(1)2^3 + (-3)^2$

課 P64 例 1

課 P64 例 1

$$(2)(-3)^3+(-2)^4$$

3計算下列各式的值:

 $(1)5-6^3 \div (-3^2)$

課 P65 例 2

$$(2)-2^4-(-2)^6 \div 4$$

4以科學記號表示法記錄下列各數:

(1)32000= ·

課 P70 例 3

 $(3)\,0.000008\!=\!\underline{\hspace{1cm}}\circ$

(2)9340000=_______

 $(4)\frac{5}{1000000} =$ ______ \circ

⑤(1)將 7×105 化成整數的形式,並判別它是幾位數。

課 P71 例 4

課 P72 例 5

(2)將 3×10^{-6} 化成小數的形式,並判別它從小數點後第幾位開始出現不是 0 的數字。

6比較下列各小題中兩數的大小關係:

 $(2)4.6 \times 10^{-5} \cdot 7.3 \times 10^{-5}$

$$(1)2.5 \times 10^7 \cdot 3.9 \times 10^7$$

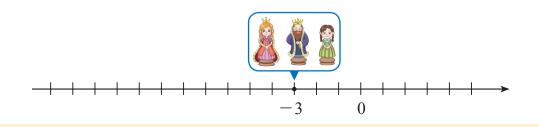
$$(3)6\times10^4 \cdot 7.2\times10^3$$

$$(4)4.96 \times 10^{-8} \cdot 3.21 \times 10^{-5}$$

本單元為概念統整課程,由學生自行挑戰, 教師可視班級情況而自行決定如何運用。

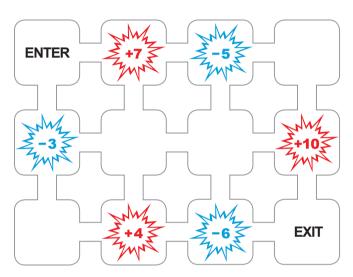
<u>心平、心安、重蔚</u>一起玩投擲一枚硬幣的遊戲,若硬幣出現正面,則將棋子往數線右方移動 2 個單位;若出現反面,則往數線左方移動 5 個單位,已知他們起初都把棋子放在數線上-3 的位置。<u>請回答</u>下列問題,並寫出你的計算過程。

(1) <u>心平、心安</u>各投擲 5 次,其中<u>心平</u>前 3 次都出現正面,後 2 次出現反面;<u>心安</u>依 序為正面、反面、正面、正面、反面,則兩人的棋子最後落在數線上的位置是否 相同?



(2)若重蔚總共投擲了10次,其中出現3次正面,7次反面,則棋子最後落在數線上的何處?

(3)承(2),請問重蔚第9次投擲完後,棋子可能落在數線上的何處?



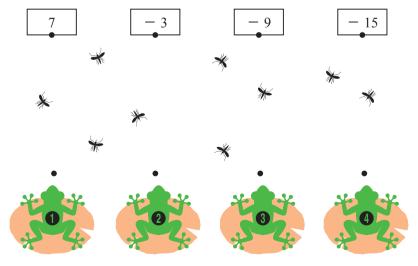
趣學數學

本單元為配合此章所設計的趣味問題,由學生自 行練習,教師可視班級情況而自行決定如何運用。

1 全配合 1-2

這是間高壓電室,部分房間中帶有正電荷或負電荷,當走過房間時,電荷會 附著在你的身上,只有當最終電荷加總為 0,才能安全的從出口離開,不遭電擊 喔!如果每個房間只能經過一次,該怎麼走才能安全離開呢?挑戰看看吧!

規則:


- 1. 從起點開始,每個房間只能經過一次。
- 2. 加總經過房間的正、負電荷總和。
- 3. 當總和為 0 時,即可順利離開。

挑戰:

- ① 收集 4 個電荷後,順利離開。
- ② 收集 5 個電荷後,順利離開。

2 全配合 1-3

4 隻青蛙肚子正餓,虎視眈眈的看著空中的蚊子,可惜牠們只能朝著正確的 答案板吐舌頭。你有發現,哪隻青蛙只能繼續餓肚子?哪隻青蛙又吃最飽呢?

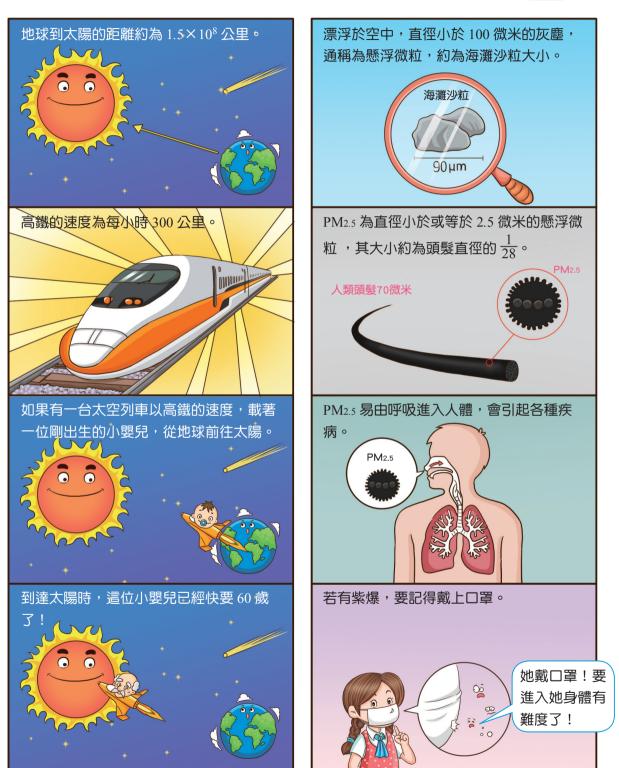
規則:

- 1. 將每個算式與正確的答案用直線連接。
- 2. 被直線通過的蚊子,即 成為青蛙的食物。

號青蛙吃最飽;

號青蛙吃最少。

 $2\times(-7)-(-5)$ $(-12)\div3+1$ $18\div(-6)\times5$ $4-6\div(1-3)$



地球到太陽的距離

PM_{2.5}

