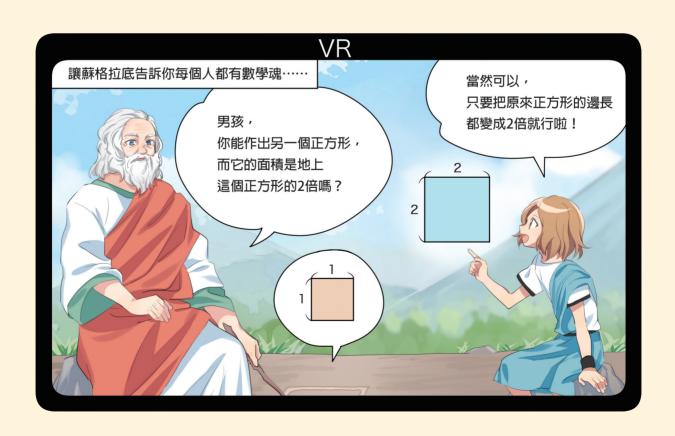
平方根與 畢氏定理

2-1 平方根與近似值 2-3 畢氏定理

2-2 根式的運算



平方根與近似值

• 認識根號 • 平方根

温故 啟思

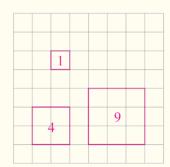
1. (1) 請完成下表:

а	1	2	3	4	5	6	7	8	9	10
a^2	1	4	9	16	25	36	49	64	81	100
а	-1	-2	-3	-4	-5	-6	-7	-8	- 9	-10
a^2	1	4	9	16	25	36	49	64	81	100

(2) 面積為 25 的正方形,邊長為 5。

$$(3) \quad \square^2 = 9 \quad , \quad \square = \underline{\qquad 3 \qquad } \quad \boxed{3} \qquad \bigcirc \qquad \circ$$

2. 請在下圖中畫出面積分別為 1、4、9 的正方形:



1 認識根號

由正方形面積與邊長的關係可知,邊長為 1 的正方形,面積為 $1^2=1$,邊長為 2 的正方形,面積為 $2^2=4$,是邊長為 1 的正方形面積的 4 倍,那麼我們要如何作出一個面積是 2 的正方形呢?

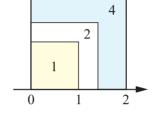
探索活動

作出面積為2的正方形

1. 配合附件四,試利用1張面積為4的正方形摺出面積為2的正方形。

將面積為4的正方形的四個角皆朝中心點內摺即可。

- 2. 在 1. 中所摺出的面積為 2 的正方形,將它與面積 為 1、面積為 4 的正方形疊合在一起,如右圖。 試比較它們的邊長大小,並回答下列問題:
 - (1) 面積為2的正方形邊長介於哪2個連續整數 之間?



答:_1、2_。

(2) 面積為2的正方形邊長是不是整數?

答: _ 不是 _ 。

在探索活動中,要怎麼表示這個不是整數的「面積為 2 的正方形邊長」呢?在數學上用 $\sqrt{2}$ (讀作<mark>根號 2</mark>) 來表示面積為 2 的正方形邊長,換句話說, $\sqrt{2}$ 是一個正數,且 ($\sqrt{2}$) 2 =2,1< $\sqrt{2}$ <2。同樣的道理,面積為 3 的正方形邊長可表示為 $\sqrt{3}$,亦即 ($\sqrt{3}$) 2 =3。

隨堂練習

用根號表示下列正方形的邊長:

(1) 面積為 5。

(2) 面積為12。

 $\sqrt{5}$

 $\sqrt{12}$

(3) 面積為4。

 $\sqrt{4}$ (或2)

在前頁的隨堂練習中,面積為4的正方形邊長為 $\sqrt{4}$,但我們也知道它的邊 長是 2,亦即 $\sqrt{4} = 2$ 。

正方形的面積與邊長的關係 (I)

下表為正方形面積與邊長的關係表,依提示在空格中填入滴當的數:

正方形面積	4	36	100	<u>36</u> 100	8 ²
正方形邊長 表示式	$\sqrt{4}$				
正方形邊長	2				

E 已知
$$36=6^2$$
,即面積為 36 的正方形邊長 = $\sqrt{36}$ = $\sqrt{6^2}$ = 6 。
已知 $100=10^2$,即面積為 100 的正方形邊長 = $\sqrt{100}$ = $\sqrt{10^2}$ = 10 。

已知
$$\frac{36}{100} = (\frac{6}{10})^2$$
,

即面積為
$$\frac{36}{100}$$
的正方形邊長= $\sqrt{\frac{36}{100}}$ = $\sqrt{(\frac{6}{10})^2}$ = $\frac{6}{10}$ = $\frac{3}{5}$ 。
面積為 8^2 的正方形邊長= $\sqrt{8^2}$ = 8 。

由例題 1 的正方形面積與邊長的關係可以發現: $\frac{\mathsf{X}}{\mathsf{X}} a \ge 0$,則 $\sqrt{a^2} = a$ 。

隨堂練習

求下列各式的值:

$$(1) \sqrt{49}$$

(2)
$$\sqrt{81}$$

(3)
$$\sqrt{\frac{49}{81}}$$

$$\sqrt{49} = \sqrt{7^2} = 7$$
 $\sqrt{81} = \sqrt{9^2} = 9$

$$\sqrt{81} = \sqrt{9^2} = 9$$

$$\sqrt{\frac{49}{81}} = \sqrt{(\frac{7}{9})^2} = \frac{7}{9}$$

例 2 正方形的面積與邊長的關係 (II)

下表為正方形邊長與面積的關係表,依提示在空格中填入適當的數:

正方形邊長	$\sqrt{4}$	$\sqrt{5}$	$\sqrt{\frac{1}{2}}$
正方形面積 表示式	$(\sqrt{4})^2$		
正方形面積	4		

$$\sqrt{5}$$
 表示面積為 5 的正方形邊長,因此面積 ($\sqrt{5}$)²=5。

$$\sqrt{\frac{1}{2}}$$
 表示面積為 $\frac{1}{2}$ 的正方形邊長,因此面積 ($\sqrt{\frac{1}{2}}$) $^2 = \frac{1}{2}$ 。

由例題 2 的正方形邊長與面積的關係可以發現: $\frac{\mathsf{X}^2}{\mathsf{X}^2} = a \cdot \mathbf{1}$

隨堂練習

求下列各式的值:

(1)
$$(\sqrt{7})^2$$

 $(\sqrt{7})^2 = 7$

(2)
$$\sqrt{11^2}$$

 $\sqrt{11^2} = (\sqrt{11})^2 = 11$

(3)
$$(\sqrt{\frac{2}{3}})^2$$

 $(\sqrt{\frac{2}{3}})^2 = \frac{2}{3}$

(4)
$$\sqrt{(\frac{1}{5})^2}$$

$$\sqrt{(\frac{1}{5})^2} = (\sqrt{\frac{1}{5}})^2 = \frac{1}{5}$$

2 平方根 ※※※

由前面的溫故啟思可知 $3^2=9$, $(-3)^2=9$,此時我們將 3 與 -3 都稱為 9 的平方根。一般而言,如果對於一正數 a,若有一數 b 滿足 $b^2=a$,則稱 b 為 a 的平方根。當 b 是 a 的平方根時, $(-b)^2=b^2=a$,此時 -b 也是 a 的平方根。

隨堂練習

36 的平方根為何?

因為 $6^2 = 36$, $(-6)^2 = 36$,

所以36的平方根為±6。

由正方形的面積與邊長的關係可知 $(\sqrt{2})^2 = 2$,因此 $\sqrt{2}$ 為 2 的平方根 $(\sqrt{2})^2 = 2$,因此 $\sqrt{2}$ 为 2 的平方根 $(\sqrt{2})^2 = (-\sqrt{2}) \times (-\sqrt{2}) = (\sqrt{2})^2 = 2$, $-\sqrt{2}$ 也是 2 的平方根,其中 $\sqrt{2} > 0$ 稱為 2 的正平方根, $-\sqrt{2} < 0$ 稱為 2 的**負平方根**;不過只有 0 的平方會等於 0,因此 0 的平方根只有一個數 0。

隨堂練習

3的平方根為何?

所以 3 的平方根為 $\pm \sqrt{3}$ 。

由前面的說明,我們可以得到兩個結論:

- 1. 一個正數 *a* 恰有兩個平方根,一為正數(稱為 *a* 的正平方根),另一為負數(稱 為 *a* 的負平方根),且兩數互為相反數。
- **2.** 對於正數 a ,a 的正平方根以 \sqrt{a} (讀作根號 a ,或 a 的二次方根)表示,a 的負平方根以 $-\sqrt{a}$ (讀作負根號 a)表示。

② 探索活動

找負數的平方根

你能夠找到-9的平方根嗎?為什麼?

不能,沒有一個數的平方會是負數。

由以上討論可知:

平方根的意義與性質

- 1. 當 a>0 時,正數 a 的平方根為 \sqrt{a} 與 $-\sqrt{a}$,其中 \sqrt{a} 是正平方根, $-\sqrt{a}$ 是負平方根,此兩數互為相反數。
- 2. 當 a=0 時,a 的平方根只有一個數 0。
- 3. 當 a < 0 時,負數 a 沒有平方根。(於國中階段)

② 數養時光機

平方根表示法的演進

中世紀時, \overline{p} 中世紀時, \overline{p} 中世紀時, \overline{p} 中世紀時, \overline{p} 中世紀時, \overline{p} 之後再翻譯成拉丁文時將 \overline{r} 中世紀 以符號 \overline{r} 表示。

我們也可以運用數 學符號來做設計, 如手提包上的圖案 都是平方根符號。

1637 年<u>法國數學家笛卡兒</u> (Descartes) 在他的幾何學一書中首次使用「 $\sqrt{\ }$ 」,此符號沿用至今,已成為常見的根號符號。

1484 年<u>法國</u>數學家<u>計</u> (Chuquet) 會用 R^2 表示 二次方根 (平方根) 。

1484 年

1525 年

1637年

1525 年,<u>德國</u>數學家<u>魯道夫</u> (Rudolff) 的一本代數教科書中首次出現「 $\sqrt{\ }$ 」這個記號,是由拉丁字母的「 γ 」轉變而來。

例3 求正整數的平方根

求下列各數的平方根:

(1) 49

- (2) 17
- 解 (1) 因為 $7^2 = (-7)^2 = 49$, 所以 49 的平方根為 $\sqrt{49} = 7$ 與 $-\sqrt{49} = -7$, 可簡記為 ± 7 。
 - (2) 因為 $(\sqrt{17})^2 = (-\sqrt{17})^2 = 17$, 所以 17 的平方根為 $\sqrt{17}$ 與 $-\sqrt{17}$, 可簡記為 $\pm \sqrt{17}$ 。

隨堂練習

求下列各數的平方根:

(1) 64

因為 $8^2 = (-8)^2 = 64$, 所以 64 的平方根為 ± 8 。 (2) 13

因為 $(\sqrt{13})^2 = (-\sqrt{13})^2 = 13$, 所以 13 的平方根為 $\pm \sqrt{13}$ 。

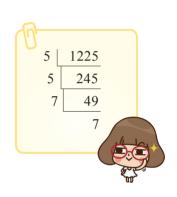
在上面的例子中,我們要求得某數 a 的平方根,若 a 是某整數的平方,則我們稱 a 為完全平方數 (或平方數),例如: $1 \times 4 \times 9 \times 64 \times \cdots$ 均為完全平方數,此時 a 的正平方根 \sqrt{a} 可以輕易化簡成一個正整數。我們可以將一正整數 a 寫成標準分解式來判斷它是否為完全平方數,進而求得 a 的平方根。

例4 利用標準分解式求完全平方數的平方根

求下列各數的平方根:

(1) $2^2 \times 3^4 \times 5^2$

- (2) 1225
- 解 (1) 因為 $2^2 \times 3^4 \times 5^2 = (2 \times 3^2 \times 5)^2$ 故 $2^2 \times 3^4 \times 5^2$ 的平方根為 $\pm \sqrt{2^2 \times 3^4 \times 5^2} = \pm \sqrt{(2 \times 3^2 \times 5)^2}$ $= \pm (2 \times 3^2 \times 5)$ $= \pm 90$
 - (2) 利用短除法,可將 1225 分解成 $1225 = 5^2 \times 7^2 = (5 \times 7)^2,$ 故 1225 的平方根為 $\pm \sqrt{1225} = \pm \sqrt{(5 \times 7)^2}$ $= \pm (5 \times 7)$ $= \pm 35$



隨堂練習

求下列各數的平方根:

 $(1) \ 2^6 \times 3^2$

$$=\pm\sqrt{2^6\times3^2}$$

$$= \pm \sqrt{(2^3 \times 3)^2}$$

$$=\pm 24$$

(2) 2025

2025 的平方根

$$= \pm \sqrt{2025}$$

$$=\pm\sqrt{5^2\times9^2}$$

$$=\pm\sqrt{(5\times9)^2}$$

$$= \pm (5 \times 9)$$

$$= \pm 45$$

例 5 求分數與小數的平方根

求下列各數的平方根:

- (1) $\frac{49}{16}$ (2) $2\frac{1}{4}$ (3) 0.09
- (1) $\frac{49}{16}$ 的平方根為 $\pm \sqrt{\frac{49}{16}} = \pm \sqrt{(\frac{7}{4})^2} = \pm \frac{7}{4}$ 。
 - (2) 因為 $2\frac{1}{4} = \frac{9}{4}$,

故
$$2\frac{1}{4}$$
的平方根為 $\pm \sqrt{\frac{9}{4}} = \pm \sqrt{(\frac{3}{2})^2} = \pm \frac{3}{2}$ 。

(3) 0.09 的平方根為 $\pm \sqrt{0.09} = \pm \sqrt{(0.3)^2} = \pm 0.3$ 。

隨堂練習

求下列各數的平方根:

 $(1) \frac{81}{100}$

$$\frac{81}{100}$$
的平方根為 $\pm \sqrt{\frac{81}{100}} = \pm \sqrt{(\frac{9}{10})^2} = \pm \frac{9}{10}$ 。

(2) $1\frac{7}{9}$

因為
$$1\frac{7}{9} = \frac{16}{9}$$
 , 故 $1\frac{7}{9}$ 的平方根為 $\pm \sqrt{\frac{16}{9}} = \pm \sqrt{(\frac{4}{3})^2} = \pm \frac{4}{3}$ 。

(3) 0.25

$$0.25$$
 的平方根為 $\pm \sqrt{0.25} = \pm \sqrt{(0.5)^2} = \pm 0.5$ 。

② 探索活動

根號裡的數

小新上課學到 $\sqrt{3^2} = 3$,因此他覺得 $\sqrt{(-3)^2}$ 等於 -3,<u>小新</u>的想法對嗎?為什麼?

不對,因為 $\sqrt{(-3)^2} = \sqrt{9} = 3$ 。

例 6 平方根的應用

已知 3x-5 的平方根為 $\pm \sqrt{10}$,求 x 的值。

隨堂練習

已知 5x+3 的平方根為 $\pm\sqrt{13}$, 求 x 的值。

因為 5x+3 的平方根為 $\pm\sqrt{13}$,

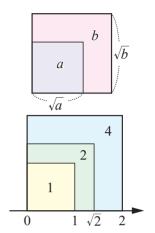
所以 $(\pm \sqrt{13})^2 = 5x + 3$,

13 = 5x + 3, 10 = 5x, x = 2

平方根的近似值

在前面的課文中,我們提到面積 2 的正方形邊長為 $\sqrt{2}$,它也是 2 的正平方 根,那麼 $\sqrt{2}$ 這個數字到底有多大呢?

我們可從幾何圖形知道: 面積較大的正方 形,邊長也比較大。如果兩個正方形的面積分別 為 a
ot B b, 目 a < b, 那麼 $\sqrt{a} < \sqrt{b}$ 。 也就是說: $\Xi 0 < a < b$,則 $0 < \sqrt{a} < \sqrt{b}$ 。 利用 這個 性質 就 可以知道二次方根整數部分的值。例如由右圖 可知這三個正方形的邊長大小關係為 $1 < \sqrt{2} < 2$, 因此可知 $\sqrt{2}$ 這個數的整數部分為 1。



平方根的整數部分

已知 m 為正整數,若 $m < \sqrt{10} < m+1$,求 m 的值。

因為 $3^2 = 9$, $4^2 = 16$, 月 9 < 10 < 16, 得 $3^2 < 10 < 4^2$, 所以 $\sqrt{3^2} < \sqrt{10} < \sqrt{4^2}$,即 $3 < \sqrt{10} < 4$, 故 m=3,也就是 √10 的整數部分為 3。

隨堂練習

- 1. 已知 a 為正整數 , 若 $a < \sqrt{135} < a + 1$, 求 a 的值。 因為 $11^2 = 121$, $12^2 = 144$, 121 < 135 < 144, 所以 $11 < \sqrt{135} < 12$, 故 a = 11。
- 2. 比較 √78 與 8 的大小。 因為 $8^2 = 64$,且 64 < 78,故 $8 < \sqrt{78}$ 。

由前述可知 $1 < \sqrt{2} < 2$, 诱過以下探索活動的方法能求得 $\sqrt{2}$ 更精確的值。

探索活動

十分逼近法

1. 將 1 與 2 之間十等分,可得 1.1、1.2、1.3、……、1.9,請利用計 算機計算下表中各數的平方值:

а	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
a^2	1.21	1.44	1.69	1.96	2.25	2.56	2.89	3.24	3.61

由上表可知 1.4 $<\sqrt{2}$ < 1.5 。

2. 再將 1.4 與 1.5 之間再十等分,得 1.41、1.42、1.43、……、1.49, 請利用計算機計算下表中各數的平方值:

a	1.4	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49
a^2	1.96	1.9881	2.0164	2.0449	2.0736	2.1025	2.1316	2.1609	2.1904	2.2201

由上表可知 $1.41 < \sqrt{2} < 1.42$,故 $\sqrt{2} \div 1.4$ 。

在探索活動中,我們利用將兩數之間十等分來求得 $\sqrt{2}$ 的近似值,這種方法 就稱為十分逼近法。在探索活動中我們求出了 $\sqrt{2}$ 的近似值到小數點後第一位, 如果想要求精確到更多位數的近似值,可以利用同樣的方法繼續推行下去。

事實上,我們也可以利用計算機直 接求出 √2 的近似值,在計算機上按下 2 鍵,再按下 $\sqrt{}$ 鍵,就可求出 $\sqrt{2}$ 的 近似值了,由此可知

計算機因廠牌、型號不同而有不同的操 作方法,詳細使用方法請參考計算機的 使用手冊,而不論計算機可顯示幾位數 字,其計算的結果都是√2的近似值。

 $\sqrt{2}$ ≒ 1.4142135……, 我們也可以利用計算機檢驗 $(\sqrt{2})^2 = 2$ 。

隨堂練習

利用計算機求出下列二次方根的近似值 後,再以四捨五入法求至小數點後第二 位, 並將答案填入方格中:

а	7	20	200	0.2	0.02
\sqrt{a}	2.65	4.47	14.14	0.45	0.14

例8 以十分逼近法求近似值

利用計算機計算,以十分逼近法求 $\sqrt{5}$ 的近似值,並以四捨五入法求至 小數點後第一位。

- (1) 因為 $2^2 = 4$, $(\sqrt{5})^2 = 5$, $3^2 = 9$, 而 4 < 5 < 9,所以 $2 < \sqrt{5} < 3$ 。
 - (2) 將 2 與 3 之間十等分, 利用計算機計算得 $2.1^2 = 4.41 < 5$, $2.2^2 = 4.84 < 5$, $2.3^2 = 5.29 > 5$, \$\mathrm{1}\$ 4.84 < 5 < 5.29 所以 $2.2 < \sqrt{5} < 2.3$ 。
 - (3) 再將 2.2 與 2.3 之間十等分, 利用計算機計算得 2.212=4.8841<5, $222^2 = 49284 < 5$, $223^2 = 49729 < 5$, $224^2 = 50176 > 5$, 可知 $2.23 < \sqrt{5} < 2.24$, 以四捨五入法求至小數點後第一位可得 $\sqrt{5} \rightleftharpoons 2.2$ 。

利用四捨五入法求近似值也可 以這麽作: 找 2.2 與 2.3 的中點 2.25,

以 2.252 與 5 比較。 因為 $2.25^2 = 5.0625 > 5$, 所以 2.20 <√5 < 2.25。

故依四捨五入法, 可得√5 ≒2.2。

隨堂練習

(1) 利用計算機計算,以十分逼近法求 $\sqrt{3}$ 的近似值,並以四捨五入法求至 小數點後第一位。

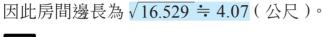
 $1 < \sqrt{3} < 2$, $1.7^2 = 2.89$, $1.8^2 = 3.24$,所以 $1.7 < \sqrt{3} < 1.8$ 。 又因為 $1.73^2 = 2.9929$, $1.74^2 = 3.0276$,故 $\sqrt{3} = 1.7$ 。

- (2) 承(1),利用計算機將(1)所得的近似值平方後,其值為何?是否等於3? 2.89,其值不等於 3。
- (3) 利用計算機計算 $(\sqrt{3})^2$ 的值為何?是否等於 3 ? 3,其值等於3。

例 9

正平方根的近似值

<u>曉華</u>家裡有一個正方形的房間,她想要在這個房間鋪上磁磚。已知這個房間面積有 5 坪 (1 坪約 3.3058 平方公尺),請問房間邊長約為多少公尺?(以四捨五入法求至小數點後第二位)



隨堂練習

小新聽說爺爺有塊面積為 1 分的正方形土地,他上網查了一下,得知 1 分 約為 293.4 坪,請問這塊正方形土地的邊長約為多少公尺?(利用計算機計 算,以四捨五入法求至小數點後第二位)

因為1分≒293.4坪,

而 293.4 坪 ⇒ (293.4×3.3058) 平方公尺 = 969.92172 平方公尺,

因此正方形土地的邊長為√969.92172 ≒ 31.14(公尺)。

例10 正平方根的應用

<u>依</u>霖剪出了一系列形狀類似的長方形紙片,所有紙片的長皆為寬的 3 倍。試問:

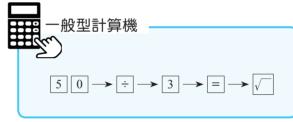
- (1) 若某張紙片的寬為 5 公分,則其面積為何?
- (2) 若要剪出一個面積為 50 平方公分的此系列長方形紙片,則這張紙片的寬約為多少公分?(以四捨五入法求至小數點後第一位)
- 解 (1) 當寬為 5 公分時,長為 3×5=15(公分), 故面積應為 15×5=75(平方公分)。
 - (2) 若紙片面積為 50 平方公分, 假設紙片的寬為 a 公分, 則長為 3a 公分,

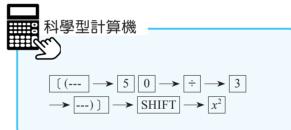
$$50 = a \times 3a = 3a^2 \cdot a^2 = \frac{50}{3} \cdot$$

因為長度為正數,取正平方根,

因此
$$a = \sqrt{\frac{50}{3}} = 4.1$$
 (公分),

故寬約為 4.1 公分。





隨堂練習

承例題 10,已知教室後方有面布告欄,其面積為 600 平方公分,<u>依霖</u>從系列紙片中找出 4 張相同的紙片,恰好能鋪滿整個布告欄,則該長方形紙片的寬應為多少公分?(利用計算機計算,以四捨五入法求至小數點後第一位)若寬為 a 公分,則長為 3a 公分,

$$600 = 4 \times a \times 3a$$
 , $a^2 = \frac{600}{12} = 50$, $a = \sqrt{50} = 7.1$ (公分),故該長方形紙片的寬約為 7.1 公分。

重點整理

$1 \sqrt{a}$ 與平方根的意義

- (1) 若 $a \ge 0$,則 $\sqrt{a^2} = a = (\pm \sqrt{a})^2$ 。
 - **6** $\sqrt{3^2} = 3 = (\pm \sqrt{3})^2$
- (2) 對於一正數 a,若一數 b 滿足 $b^2 = a$,則稱 b 為 a 的平方根。
- (3) 當 a>0 時,正數 a 的平方根為 \sqrt{a} 與 $-\sqrt{a}$,其中 \sqrt{a} 是正平方根, $-\sqrt{a}$ 是負平方根,此兩數互為相反數,可合併簡記為 $\pm\sqrt{a}$ 。
 - **例** 3 的平方根為 $\pm \sqrt{3}$ 。
- (5) 當 a < 0 時,負數 a 沒有平方根。(於國中階段)

2 比較平方根的大小

若 0 < a < b,則 $0 < \sqrt{a} < \sqrt{b}$ 。

例 0 < 3 < 5,可知 $0 < \sqrt{3} < \sqrt{5}$ 。

3 平方根的近似值

利用十分逼近法或計算機可求得正平方根的值或近似值。

[P.61 隨堂練習] [P.62 課文] [P.63 隨堂練習] [P.64 課文] [P.65 課文] [P.68 例 5]

1 下列敘述,正確請在空格中畫○,錯誤請畫 ×:

(每小題2分)

- (○)(1)25的平方根為5與-5。
- (×)(2)4為-16的平方根。
- $(\times)(3)\sqrt{9} = \pm 3$
- (\times) (4) 面積為 3 的正方形邊長為 $\pm\sqrt{3}$ 。
- $(\bigcirc) (5) \sqrt{5^2} = 5 \circ$
- (\times) (6) $\sqrt{(-5)^2} = -5$ °
- $(\times)(7)\sqrt{4\frac{1}{9}} = 2\frac{1}{3}$
- (\bigcirc) (8) $(\sqrt{\frac{1}{4}})^2 = \frac{1}{4}$ °
- (\times) (9) $\sqrt{2.5} = 0.5$ °

2 求下列各數的平方根:

P.66 例 3 P.67 例 4 P.68 例 5

(每小題6分)

- (1) 196
 - ± 14
- (3) 2.25
- (5) 15 $\pm \sqrt{15}$

 ± 1.5

- (2) $\frac{81}{121}$
 - $\pm \frac{9}{11}$
- (4) $2^4 \times 5^2 \times 7^2$

$$\pm \sqrt{2^4 \times 5^2 \times 7^2} = \pm \sqrt{(2^2 \times 5 \times 7)^2}$$
$$= \pm (2^2 \times 5 \times 7)$$

 $= \pm 140$

P.62 隨堂練習

3 求下列各式的值:

(每小題6分)

(1)
$$\sqrt{900}$$

$$\sqrt{900} = 30$$

$$(2) \sqrt{\frac{144}{289}}$$

$$\sqrt{\frac{144}{289}} = \frac{12}{17}$$

P.70 隨堂練習

4 比較下列各數的大小:

(10分)

$$\sqrt{65} \cdot \sqrt{70} \cdot 8 \cdot 9$$

$$(\sqrt{65})^2 = 65$$
, $(\sqrt{70})^2 = 70$, $8^2 = 64$, $9^2 = 81$,

因為 81 > 70 > 65 > 64,所以 $9 > \sqrt{70} > \sqrt{65} > 8$ 。

P.70 例 7

5 (1) 試問 √15 介於哪兩個連續整數之間?

(每小題 10 分)

(A)
$$1 \cdot 2$$
 (B) $2 \cdot 3$ (C) $3 \cdot 4$ (D) $4 \cdot 5$

(C)
$$3 \cdot 4$$

$$(D) 4 \cdot 3$$

答: (C) 。

P.72 例 8

- (2) 已知 $3.8^2 = 14.44 \times 3.85^2 = 14.8225$, $3.9^2 = 15.21$,則 $\sqrt{15}$ 的近似值為多 少?(以四捨五入法求至小數點後第一位)

- (A) 3.7 (B) 3.8 (C) 3.9 (D) 無法確定

答: (C) 。

因為 $3.85^2 = 14.8225 < 15$, $3.9 > \sqrt{15} > 3.85$,

故 $\sqrt{15} = 3.9$ 。

P.73 例 9

- 6 若有一圓面積為 20,其半徑長為 2.52 。(已知圓周率約為 3.14,半徑長以
- 四捨五入法求至小數點後第二位)

(10分)

設半徑長為r, $20 = 3.14 \times r^2$, 因此 $r^2 = \frac{20}{3.14}$,

故半徑長 $r = \sqrt{\frac{20}{3.14}} = 2.52$ ∘