

■標準分解式與分數運算

在第1章我們建立了正負數的概念,正負數包含整數、小數與分數。而在生活中,你知道藥物的半衰期可以利用分數的指數記法來計算嗎? 本章將延伸第1章的概念,進一步學習分數與指數的運算。

搭配頁數 P.80

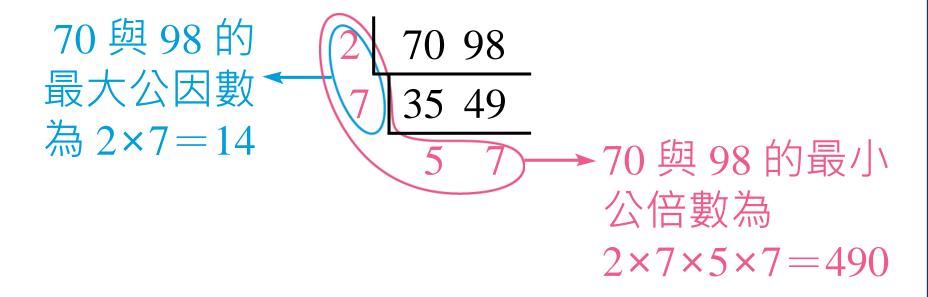
半衰期長的藥物,在體內消除慢,停留時間長,服藥的間隔時間就要比較長;反之,半衰期短 的藥物,在體內消除快,服藥的間隔時間就會比較短。 通常經過 5 個半衰期,藥物在血中的濃 度只剩原來的 $\frac{1}{32}$,就已經非常低了! 藥物濃度 $\frac{1}{32}$? 半衰期?

回顧 1 2 和 5 的倍數判別法

- (1) 如果一個整數的個位數字是 0、2、4、6 或8, 則這個整數是 2 的倍數。例如:1024、2310。
- (2) 如果一個整數的個位數字是 0 或 5, 則這個 整數是 5 的倍數。 例如:735、2310。

學習前哨站

課前練習


- 解(1)26是
- ✓ 2 的倍數
- 5的倍數

- (2)730是
- ✓ 2 的倍數
- ✓ 5 的倍數
- (3) 2465 是
- □ 2 的倍數
- ✓ 5 的倍數

回顧 2 最大公因數與最小公倍數

學習前哨站

課前練習

利用短除法求 48、60 的最大公因數與最小公倍數:

解

CH2-1 質因數分解

- 1 因數與倍數
- ② 質數與合數
- ③ 標準分解式

國小時學過以短除法做質因數分解,本章將從質因數分解出發來學習標準分解式,經由標準分解式認識公因數與公倍數,也可從最小公倍數進行分數的通分。

1 因數與倍數

1740÷29=60,所以一個爌肉便當 60 元。

在左圖中, 1740÷29=60, 即 1740=60×29, 因此:

- (1) 29 和 60 都是 1740 的因數。
- (2) 1740 是 29 和 60 的倍數。

□ ▲ 因數與倍數

如果 $a \cdot b \cdot c$ 為任意三個整數,且 $a \cdot b \cdot c$ 皆 不為 0,若 $a \div b = c$,即 $a = b \times c$,則

- $(1) b \cdot c 是 a$ 的因數。
- (2) a 是 $b \cdot c$ 的倍數。

根據因數、倍數的意義,我們可以來討論1和0這兩個數的因數與倍數:

- ① 因為任何整數 a 除以 1 的結果都是 a (即 $a \div 1 = a$), 所以任何整數都是 1 的倍數, 1 是任何整數的因數。
- ② 因為 0 不可以當作除數,所以 0 不是任何整 數的因數。
- 3 因為 $0 \div a = 0(a \ne 0)$,所以 0 是任何非零整 **数的倍数。**

在國中階段,若沒有特別說明,因數都是指正因數;而倍數指的是正倍數。

在學習前哨站,已複習曾學過的2、5倍數判別法,接下來我們將學習4、3、9、11的倍數判別法。

▶4 的倍數判別法

要判別一個數是不是 4 的倍數,除了首 接用除法判別外,還有更簡便的方法。 例如: 判別 7528 是不是 4 的倍數時, 因為 $100=25\times4$,所以 100 的倍數都 是4的倍數, 而 $7528 = 75 \times 100 + 28 \cdot 75 \times 100$ 必為 4 的倍數,末兩位數28是4的倍數, 所以 7528 是 4 的倍數。

◎ 4 的倍數判別法

如果一個整數的末兩位數是4的倍數,則這個 整數是4的倍數。

例 1 人 判別 4 的倍數

判別下列各數是否為 4 的倍數。 (1) 536

解(1)因為 536 的末兩位數 36 是 4 的倍數, 所以 536 是 4 的倍數。

例 1 人 判別 4 的倍數

判別下列各數是否為4的倍數。

(2) 2370

解 (2) 因為 2370 的末兩位數 70 不是 4 的倍數, 所以 2370 不是 4 的倍數。

隨堂練習

有一個四位數 23□4,如果此數是 4 的倍數, 則□可以填入哪些數字?

四位數 23 4 的末二位數中,

04、24、44、64、84 為 4 的倍數,

所以可填 0、2、4、6、8。

Thinking.

7528 是不是 8 的倍數呢?除了直接利用除法之 外,還有沒有更簡便的方法呢?

(提示:1000=125×8)

解

是,判別該數的末三位數是否為 8 的倍數即可。

▶3、9的倍數判別法

要判別 234 是不是 3 的倍數或 9 的倍數,可以先將 234 寫成 200+30+4,再透過下圖來學習它們的判別法。

觀察上圖可得,

$$234 = 2 \times 100$$
 $+ 3 \times 10$ $+ 4$ $= 2 \times (99 + 1)$ $+ 3 \times (9 + 1)$ $+ 4$ $= 2 \times 99 + 2$ $+ 3 \times 9 + 3$ $+ 4$ $= (2 \times 99 + 3 \times 9) + (2 + 3 + 4)$ 9 的倍數,也是 3 的倍數 7

所以要判別 234 是否為 9 的倍數,只要看「2+3+4 的和」是否為 9 的倍數。同樣地,要判別 234 是否為 3 的倍數,只要看「2+3+4 的和」是否為 3 的倍數。因為 2+3+4=9,所以 234 是 9 的倍數,也是 3 的倍數。

□ ▲ 3、9 的倍數判別法

如果一個整數的各位數字和是 3 的倍數,則這 個整數是3的倍數;

如果一個整數的各位數字和是9的倍數,則這 個整數是9的倍數。

例 2 **人** 判別 3、9 的倍數

判別6108是否為3的倍數?是否為9的倍數?

M = 6108 的各位數字和為 6+1+0+8=15

$$15 \div 3 = 5$$
; $15 \div 9 = 1 \cdots 6$

所以6108是3的倍數,不是9的倍數。

隨堂練習

1. 有一個四位數 149□ 是 3 的倍數,則□可填入哪些數字?

1 \ 4 \ 7 \ \

隨堂練習

2. 有一個四位數 149□ 是 9 的倍數,則□可填入哪些數字?

4 •

Thinking

如果一個整數是3的倍數,則這個整數一定是 9的倍數嗎?

解|不一定。

例如:12、15、21 …… 是3的倍數,但不是 9的倍數。

▶ 11 的倍數判別法

要判別 42537 是不是 11 的倍數,可以將 42537 寫成

42537

$$=4 \times 10000$$
 $+2 \times 1000$ $+5 \times 100$ $+3 \times 10$ $+7$ $=4 \times (9999+1)+2 \times (1001-1)+5 \times (99+1)+3 \times (11-1)+7$ $=4 \times 9999+4$ $+2 \times 1001-2$ $+5 \times 99+5$ $+3 \times 11-3$ $+7$ $=(4 \times 9999+2 \times 1001+5 \times 99+3 \times 11)+(4+5+7)-(2+3)$ 11 的倍數 奇數位數字和 $(9999 \times 1001 \times 99 \times 11$ 都是 11 的倍數) 偶數位數字和

所以 42537 除以 11 的餘數與 (4+5+7)-(2+3) 除以 11 的餘數相同。因為 (4+5+7)-(2+3)=11,所以 42537 是 11 的倍數。

□ 11 的倍數判別法

如果一個整數的「奇數位數字和」與「偶數位 數字和」的差是 11 的倍數或 0, 則這個整數是 11 的倍數。

例 3 **人** 判別 11 的倍數

判別下列各數是否為 11 的倍數。 (1) 9724

解 (1) 9724 的奇數位數字和為 7+4=11, 偶數位數字和為 9+2=11。

> 11-11=0, 所以 9724 是 11 的倍數。

例 3 **人** 判別 11 的倍數

判別下列各數是否為 11 的倍數。 (2) 98760

解 (2) 98760 的奇數位數字和為 9+7+0=16, 偶數位數字和為 8+6=14。 16-14=2 (不是 11 的倍數或 0), 所以 98760 不是 11 的倍數。

1. 判別 2345、123321 是否為 11 的倍數。

8-6=2 (不是 11 的倍數或 0),

所以 2345 不是 11 的倍數。

123321 的奇數位數字和是 2+3+1=6

偶數位數字和是 1+3+2=6。

$$6 - 6 = 0$$

所以 123321 是 11 的倍數。

隨堂練習

2. 有一個四位數 7□36,如果此數是 11 的倍數,則□=?

奇數位數字和: 二+6,

偶數位數字和:7+3=10,

 $\Box + 6 - 10 = \Box - 4$

所以□=4。

② 質數與合數

在國小我們學過:

- □如果一個大於1的整數,只有1和本身兩個因數,稱此數為質數。例如:2、3、5、7、11的因數都只有1和本身,所以2、3、5、7、11都是質數。
- ②如果一個大於1的整數,除了1和本身之外, 還有其他的因數,稱此數為合數。例如:6 的因數有1、2、3、6,所以6是合數。

- 31既不是質數,也不是合數。
- 4 2 是最小的質數,也是質數中唯一的偶數。

自然

在<u>美洲</u>的北部存在一種生命週期很長的昆蟲,牠們的幼蟲窩在地面底下十七年以後,才會爬出地面羽化成成蟲,然後交配與產卵,接著面臨死亡,我們稱之為『十七年蟬』。如此一來,同一地區每十七年,就會出現大量的十七年蟬,而中間不見其蹤影!另外還有一種『十三年蟬』,也被觀察到有同樣的現象。

自然

生物學家們推測:可能當初蟬有一種天敵, 假設這種天敵的生命週期是3年,蟬要避開這 種天敵,在演化上就是避開3的倍數的生命週 期;同樣地,如果天敵的生命週期是5年,就 在演化上避開 5 的倍數。依此類推,蟬的最佳 生存策略就是選擇一個質數的生命週期,這樣 蟬和天敵就比較難相遇!17 是一個質數,假設 掠食者的生命週期為5年,那麼每 $5 \times 17 = 85$ 年才會受到一次危機,藉以提高存活的機率, 讓族群得以代代繁衍下去。

自然

根據達爾文 (Charles Robert Darwin, 1809-1882) 的演化論,演化是最能適應現有環境的族群才能存活下來,而適應環境的方式不一定非得要有獅子或老虎般鋒利的武器才行,像蟬這種利用生命週期的方式也是一種方法,十七年的沉寂,換得一個月的陽光。躲避天敵,繁衍族群,也是另外一種演化的策略。

對於一個 100 以內的數是否為質數,有沒 有方法可以篩檢呢?

古希臘的數學家<u>埃拉托賽尼</u>(Eratosthenes, 西元前 276-西元前 194)發現了一個方法,可以簡化逐一判別每個數是否為質數的步驟,這個方法稱為「<u>埃拉托賽尼</u>篩法」,以下將利用 探索活動來了解他的想法。

 $+ + \times$

、探索活動 埃拉托賽尼篩法

在 1~100 的整數中 操作並回答問題:

步驟1:

因為1不是質數, 也不是合數,所 以刪去1。

,依埃拉托賽尼的步驟實際	,	依埃拉托	賽尼的	步驟	實際	スマス
--------------	---	------	-----	----	----	-----

X	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

、探索活動 埃拉托賽尼篩法

在 1~100 的整數中 操作並回答問題:

步驟 2:

剩下的數最小是 2 圈出 2 並刪去其 餘 2 的倍數。

②此步驟刪去的數最小是__4_。

,依埃拉托賽尼的步驟實	了際
-------------	----

	1	2	3	A	5	B	7	8	9	10
	11	12	13	14	15	16	17	18	19	20
,	21	22	23	24	25	26	27	28	29	30
	31	32	33	<i>3</i> 4	35	<i>3</i> 6	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
	51	52	53	<i>5</i> 4	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	82	83	8 4	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

、探索活動 埃拉托賽尼篩法

在 1~100 的整數中操作並回答問題:

步驟 3:

剩下的數最小是 3, 圈出 3 並刪去其 餘 3 的倍數。

②此步驟刪去的數最小是____。

在 1~100 的整數中,依埃拉托賽尼的步驟實際

	1	2	3	A	5	B	7	8	8	10
	11	12	13	14	15	16	17	18	19	20
,	21	22	23	24	25	26	21	28	29	30
	31	32	33	34	35	<i>3</i> 6	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
	51	52	53	<i>5</i> 4	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	8 2	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

埃拉托賽尼篩法 探索活動

操作並回答問題:

步驟 4:

剩下的數最小是 5, 圈出5並刪去其 餘5的倍數。

②此步驟刪去的數 最小是 25

在 1~100 的整數中,依埃拉托賽尼的步驟實際

	1	2	3	A	<u>(5)</u>	B	7	8	8	10
	11	12	13	14	15	16	17	18	19	20
,	21	22	23	24	25	26	21	28	29	30
	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
	51	52	53	<i>5</i> 4	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

埃拉托賽尼篩法 探索活動

操作並回答問題:

步驟 5:

剩下的數最小是7, 圈出7並刪去其 餘7的倍數。

②此步驟刪去的數 最小是 49

在 1~100 的整數中,依埃拉托賽尼的步驟實際

	X	2	3	A	<u>(5)</u>	B	7	8	8	10
	11	12	13	14	15	16	17	18	19	20
,	21	22	23	24	25	26	21	28	29	30
	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
	51	52	53	<i>5</i> 4	55	<i>5</i> 6	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	71	78	79	80
	81	82	83	8 4	85	% 6	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

探索活動 埃拉托賽尼篩法

在1~100的整數中,依埃拉托賽尼的步驟實際操作並回答問題: 1/23/4/5/6/8/9/10

步驟 6:

將剩下的數全部 圈起來。

②此時所有圈出來 的數是否都是質 數?

✓是

一否

	~ <u>~</u>	<u>/ 177</u>	<u>ט נ.</u>	<u> </u>	<u> </u>	ر ل	אניוו י	^ ノー	. 1 / 1 \
X	2	3	A	5	B	7	8	8	10
11)	12	13	14	15	16	17	18	19	20
21	22	23	24	25	2 6	21	28	29	30
31)	32	33	<i>3</i> 4	35	3 6	37	38	39	40
41)	42	43	44	45	46	47	48	49	50
51	52	5 3	<i>5</i> 4	55	5 6	51	58	59	60
61)	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	71	78	79	80
81	8 2	83	8 4	85	% 6	81	88	89	90
91	92	93	94	95	96	97	98	99	100

Thinking

1. 由步驟 2~步驟 5 中,每個步驟圈出的數與 所刪去的最小數,有什麼關係呢?

|解||每個步驟所刪去的最小數是圈出的數的平方。

Thinking

2. 利用埃拉托賽尼篩法找出小於 100 的質數, 為何只需使用質數2、3、5、7篩檢即可, 而不需使用11或更大的質數篩檢?

解【解一】

步驟 5 完成後,剩下的數最小的是 11, 圈出 11 並刪去其餘 11 的倍數, 而由第1題可知,刪去的數最小是 112=121,已超過100。

Thinking

2. 利用埃拉托賽尼篩法找出小於 100 的質數, 為何只需使用質數2、3、5、7篩檢即可, 而不需使用 11 或更大的質數篩檢?

解【解二】

因為 11 的倍數中,除了 11 以外, 11 的 2、3、4、5、6、7、8、9 倍在前面 的步驟中已經全被刪除,

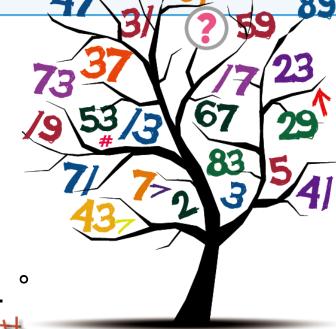
而 11 的 10、11、······ 倍皆會超過 100。

補給站 質數的個數

質數、合數與1構成了所有的正整數,而合數的個數顯然有無限多個(例如:所有10的倍數都是合數),於是我們想問:質數的個數也有無限多個嗎?或是存在著一個「最大的質數」,所有比此數大的整數都是合數?

早在西元前三世紀,<u>希臘</u>大數學家<u>歐幾里</u>德(Euclid of Alexandria,西元前 325-西元前 265)在其名著《幾何原本》(*Elements*)中,就對這個問題提出了解答,證明了質數的個數有無限多個。

補給站 質數的個數


較小的質數很容易判斷,例如:2、3、5、7、11、……等;但是較大的質數要如何搜尋呢?我們可利用電腦強大的運算及判斷能力,

來發掘更多的質數。

樹上 1~100 的質數 好像還少了一個, ? 要填入什麼數呢?

答:<u>79</u>

如果a是b的因數,且a是質數,就稱a為b的質因數。

例如:15=1×15=3×5,15的因數有1、3、5、 15,其中3、5是質數,所以3、5為 15的質因數。

例 4 人因數與質因數

列出 45 的所有因數,並寫出哪些是 45 的質因數。

$$m$$
 45=1×45
=3×15
=5×9

因此 45 的因數有 1、3、5、9、15、45,

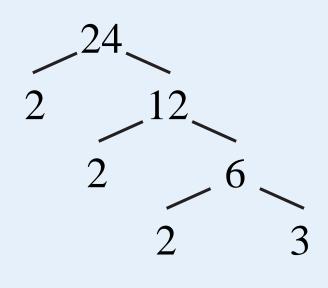
其中3、5是質數,

所以3、5為45的質因數。

隨堂練習

列出40的所有因數,並寫出哪些是40的質因數。

 $40 = 1 \times 40 = 2 \times 20 = 4 \times 10 = 5 \times 8$


因此 40 的因數有 1、2、4、5、8、10、20、40,

其中2、5是質數,所以2、5是40的質因數。

在國小時,我們學過利用樹狀圖或短除法 將一個正整數完全分解為幾個質因數的乘積。 例如:

樹狀圖

 $24 = 2 \times 2 \times 2 \times 3$

短除法

$$24 = 2 \times 2 \times 2 \times 3$$

這樣將一個大於 1 的正整數完全分解為幾個質因數連乘積的過程,稱為這個正整數的質因數分解。在數學上,為了方便溝通起見,約定做完質因數分解後,把較小的質因數寫在前面,較大的寫在後面,遇有相同的質因數連乘時,就以指數形式表示,像這樣的表示方式,稱為這個正整數的標準分解式。

例如: 24=2×2×2×3=2³×3 2³×3 稱為 24 的標準分解式, 其中 2 與 3 都是 24 的質因數。

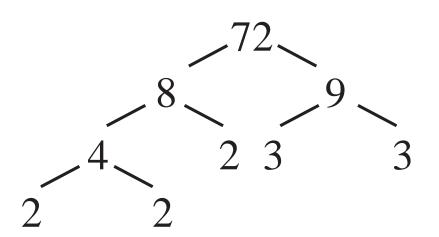
例 5 標準分解式

將 1020 寫成標準分解式,並求出 1020 的相異 質因數。

解

$$1020 = 2 \times 2 \times 3 \times 5 \times 17$$
$$= 2^2 \times 3 \times 5 \times 17$$

所以 1020 的相異質因數有 2、3、5、17。



隨堂練習

1. 右圖是<u>成俊</u>用樹狀圖 將 72 完全分解為質 因數乘積的過程,寫 出 72 的標準分解式。

$$72 = 2 \times 2 \times 2 \times 3 \times 3$$
$$= 2^{3} \times 3^{2}$$

2. 將 990 寫成標準分解式,並求出 990 的相異質因數。

所以990的相異質因數有2、3、5、11。

接下來,我們要學習如何利用標準分解式來判別因數與倍數,做為用標準分解式求最大公因數與最小公倍數的預備。

例如:5 是否為 5^2 的因數? 5^2 是否為 5 的倍數?因為 $5^2=5\times 5$ 可被 5 整除,所以 5 是 5^2 的因數, 5^2 是 5 的倍數。

又如: 5^2 是否為 5^3 的因數? 5^3 是否為 5^2 的倍數?因為 $5^3=5\times5\times5$ 可被 $5\times5(=5^2)$ 整除,所以 5^2 是 5^3 的因數, 5^3 是 5^2 的倍數。

例 6 \ 以標準分解式判別因數與倍數

判別 $2^3 \times 7$ 是否為 $2^2 \times 7$ 的倍數。

解

因為
$$2^3 \times 7 = (2 \times 2 \times 7) \times 2 = (2^2 \times 7) \times 2$$
,

又
$$(2^2 \times 7) \times 2$$
 是 $2^2 \times 7$ 的倍數,

所以 23×7 是 22×7 的倍數。

隨堂練習

- 1.下列哪些是 $2^2 \times 3^2$ 的因數?在□中打「 ✓ 」。
 - **2**
 - $2^2 \times 3^3$
 - $\square 2 \times 3 \times 5$
 - $\sqrt{2\times3^2}$

隨堂練習

2.下列哪些是 2²×3 的倍數?在□中打「✓」。

- 2×3^2
- \checkmark 2³×3
- \checkmark 2³×3²
- $2^2 \times 3^2 \times 5$

1 因數與倍數

如果 $a \cdot b \cdot c$ 為任意三個整數,且 $a \cdot b \cdot c$ 皆不為 0,若 $a \div b = c$,即 $a = b \times c$,則:

- $(1) b \cdot c 是 a$ 的因數。
- (2) a 是 $b \cdot c$ 的倍數。

2 2、3、4、5、9、11 的倍數判別法

- (1) 2 的倍數:個位數字是 0、2、4、6 或 8。
- (2) 3 的倍數:各位數字和是 3 的倍數。
- (3) 4 的倍數:末兩位數是 4 的倍數。
- (4) 5 的倍數:個位數字是 0、5。
- (5)9的倍數:各位數字和是9的倍數。
- (6) 11 的倍數:「奇數位數字和」與「偶數位數字和」的差是 11 的倍數或 0。

3 質數與合數

- (1) 一個大於 1 的整數,只有 1 和本身兩個 因數,稱此數為質數。
- (2) 一個大於 1 的整數,除了 1 和本身之外, 還有其他的因數,稱此數為合數。

例 7是質數,10是合數。

(3)1不是質數,也不是合數;2是最小的質數,也是質數中唯一的偶數。

4 質因數

如果a是b的因數,而且a是質數,就稱a 為b的質因數。

例 6的因數有 1、2、3、6,因為 2、3是 質數,所以 2 與 3 是 6 的質因數。

5 質因數分解與標準分解式

- (1) 將一個大於 1 的正整數完全分解為幾個 質因數連乘積的過程,稱為這個正整數 的質因數分解。
- (2) 一個正整數做質因數分解後,將此數的所有質因數由小而大相乘,且遇有相同的質因數連乘時,就以指數形式表示,像這樣的表示方式稱為這個正整數的標準分解式。例 72=23×32

1 判別下列各數是否為 2、3、4、5、9 或 11 的倍數,並在表格中打「✓」。

解

	102	594	4851	28160
2 的倍數	✓	✓		✓
3 的倍數	✓	✓	✓	
4 的倍數				✓
5 的倍數				✓
9的倍數		✓	✓	
11 的倍數		✓	✓	✓

2 將右表中出現的質數圈起來,恰好可形成一個英文字母,此英文字母是 F 。

解

59	61	19	29
47	63	14	36
23	2	79	57
17	25	15	93
6	1	91	87

3 列出 105 所有的因數,並寫出 105 的質因數。

解 105 的因數有 1、3、5、7、15、21、35、105。

105 的質因數有 3、5、7。

4 將下列各數寫成標準分解式:

(1) 117

$$=3^2 \times 13$$

4 將下列各數寫成標準分解式:

(2) 528

解

$$=2^{4} \times 3 \times 11$$

4 將下列各數寫成標準分解式:

(3) 56700

解

$$=567 \times 100$$

$$=3^4 \times 7 \times 2^2 \times 5^2$$

$$=2^2 \times 3^4 \times 5^2 \times 7$$

5 (1) 下列哪些數是 23×32×7×113 的因數?

在□中打「✓」。

$$\square$$
 2²×5

 $\checkmark 2^2 \times 11^3$

$$\bigcap 7^2 \times 11$$

$$\checkmark$$
 2×3×11²

5 (2) 下列哪些數是 44 的倍數?

在□中打「✓」。

解

 $\square 2 \times 11$

 11^4

 $2^2 \times 3 \times 11$

 $2^3 \times 11^3$

- 6 桌上有 18 個大小相同的正方體積木,今欲將 18 個積木進行分堆,每堆積木的個數都一樣,不能剩下,試回答下列問題:
 - (1) 利用分成的堆數,找出每堆積木的個數, 並完成下列表格。

解	分成堆數	1	2	3	6	9	18
	每堆個數	18	9	6	3	2	1

- 6 桌上有 18 個大小相同的正方體積木, 今欲將 18 個積木進行分堆, 每堆積木的個數都一樣, 不能剩下, 試回答下列問題:
 - (2) 承(1),若每堆至少2個,但不能多於10個,則可能的分堆方法有哪些?

解因每堆至少2個,但不能多於10個, 所以可能的分堆方法有:

- ①分成2堆,每堆9個;
- ②分成3堆,每堆6個;答:每堆2或3
- ③分成6堆,每堆3個;
- ④分成9堆,每堆2個。

或6或9個