

我們曾經利用線對稱學習一些特殊四邊形的性質,接 下來將透過全等性質進行推理與說明。

#### 長方形(矩形)

**長方形是四個內角都是直角的四邊形**。符合平行四邊形判別性質「兩雙對角分別相等」,因此長方形也是平行四邊形,具有平行四邊形所有的性質。接著我們來看長方形對角線的性質。



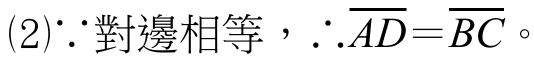






#### 長方形的兩對角線相等且互相平分。

說明(1)如右圖,長方形ABCD中,對角線 $\overline{AC}$ 與 $\overline{BD}$ 相交於O點。



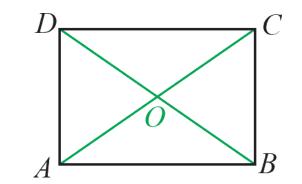
在 $\triangle ADC$ 和 $\triangle BCD$ 中,

$$\therefore \angle ADC = \angle BCD = 90^{\circ}$$
,

$$\overline{AD} = \overline{BC}$$
,  $\overline{CD} = \overline{CD}$ ,

 $∴ \triangle ADC \cong \triangle BCD(SAS)$  全等性質),

得 $\overline{AC} = \overline{BD}$ 。因此長方形的兩對角線相等。











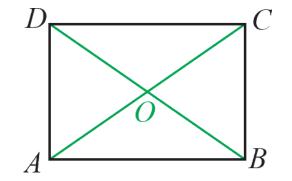


#### 長方形的兩對角線相等且互相平分。

說明(3):長方形也是平行四邊形,

:.兩對角線會互相平分,

得
$$\overline{OA} = \overline{OC} = \overline{OB} = \overline{OD}$$
。







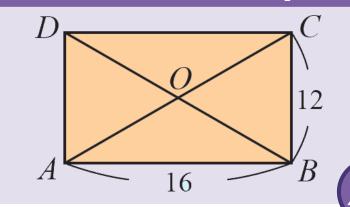




# 例(1) 長方形的對角線性質

#### 搭配課本p204

如右圖,長方形 ABCD 中,已知  $\overline{BC} = 12$ ,  $\overline{AB} = 16$ ,求  $\overline{AC}$  長與  $\overline{BO}$  長。





(1)在 $\triangle ABC$ 中, $\angle ABC = 90^{\circ}$ ,



$$=\sqrt{256+144}=\sqrt{400}=20$$



$$\therefore \overline{BO} = \frac{1}{2}\overline{BD} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 20 = 10$$









如右圖,四邊形 ABCD 為長方形, $\overline{AB} = 8cm$ ,

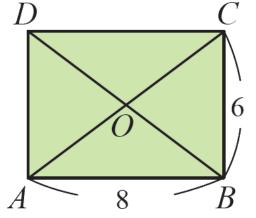
$$\overline{BC} = 6cm$$
 · 求 $\triangle AOB$  的周長與面積。



$$\overline{BD} = \overline{AC} = \sqrt{8^2 + 6^2} = 10$$



$$\triangle AOB$$
 的面積 =  $\frac{1}{4}$ x長方形  $ABCD$  的面積 =  $\frac{1}{4}$ x6x8 =  $12(cm^2)$ 









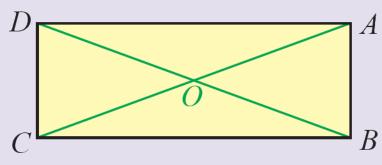


我們知道「長方形的兩對角線相等且互相平分」。反過來說,兩對角線相等且互相平分的四邊形是長方形嗎?



# 例 2 長方形的判別性質:兩對角線相等且互相平分 搭配課本p205

如右圖,四邊形 ABCD 中, $\overline{AC} = \overline{BD}$ ,  $\overline{D}$  且  $\overline{D}$  為  $\overline{D}$  的中點,那麼四邊形  $\overline{D}$  和BCD 是長方形嗎?



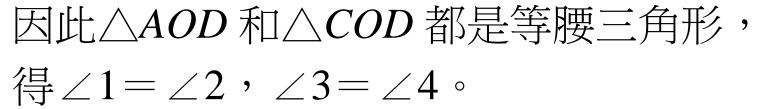




#### (1)如右圖,

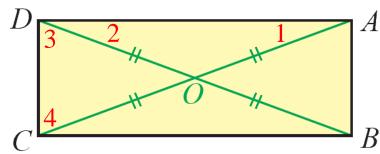


$$...\overline{OA} = \overline{OB} = \overline{OC} = \overline{OD} \circ$$



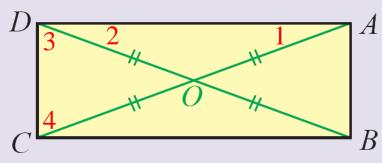






# 例(2)長方形的判別性質:兩對角線相等且互相平分 搭配課本p205

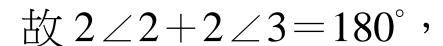
如右圖,四邊形 ABCD 中, $\overline{AC} = \overline{BD}$ , D 且 O 為  $\overline{AC}$ 、  $\overline{BD}$  的中點,那麼四邊形 ABCD 是長方形嗎?







(2)在 $\triangle ADC$ 中, $\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$ ,



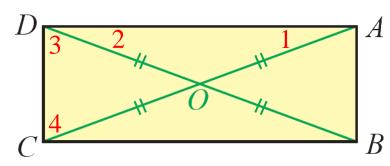


同理 $\angle DCB$ 、 $\angle CBA$ 、 $\angle BAD$ 也是  $90^{\circ}$ ,

- ::四個內角都是直角,
- :.四邊形 ABCD 是長方形。



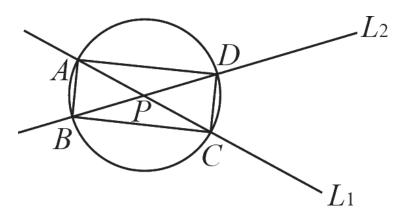




也就是說,兩對角線相等且互相平分的四邊形是長方形。



如右圖, $L_1$ 、 $L_2$  相交於 P 點,以 P 為 圓心,適當長為半徑畫圓,圓與  $L_1$  的交點為 A、C,與  $L_2$  的交點為 B、D。試說明四邊形 ABCD 為長方形的理由。











由 $\overline{AC} = \overline{BD}$  (圓直徑)

及 $\overline{PA} = \overline{PC}$ 且 $\overline{PB} = \overline{PD}$ (圓半徑)

得四邊形 ABCD 的兩對角線相等且互相平分 故四邊形 ABCD 為長方形



長方形的兩對角線相等,那麼兩對角線相等的四邊形一定是

長方形嗎?說說你的看法。

兩對角線等長的四邊形不一定是長方形, 如右圖





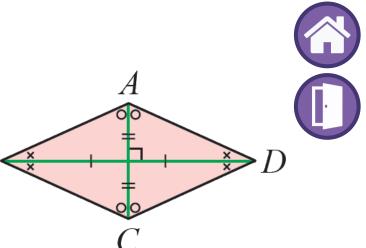




#### 菱形

**菱形是四個邊都相等的四邊形。**符合平行四邊形判別 性質「兩雙對邊分別相等」,因此菱形也是平行四邊形, 具有平行四邊形所有的性質。

在第 110 頁中,我們知道如右圖的菱 形 ABCD 中,兩對角線  $\overline{AC}$  與  $\overline{BD}$  皆為對稱 軸,利用線對稱概念,可知  $\overline{AC}$ 、 $\overline{BD}$  互相 $^{B}$ 垂直平分且分別平分四個內角。接著利用 以上性質做練習。





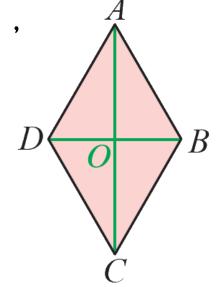


解 (1):  $\overline{AC}$  與  $\overline{BD}$  互相垂直平分,  $\therefore$   $\angle AOB = 90^{\circ}$ 

如右圖,菱形 ABCD 中, $\angle BAO = 30^{\circ}$ , $\overline{AB} = 12$ ,

試回答下列問題:

- (1) ∠ABO 是幾度?
- (2)此菱形兩對角線長之和為多少?









(2)由(1)可知 $\triangle ADB$  為正三角形,故 $\overline{BD} = 12$ , $\overline{DO} = \frac{1}{7}\overline{BD} = 6$ 

由畢氏定理得 $\overline{AO} = \sqrt{12^2 - 6^2} = 6\sqrt{3}$ , $\overline{AC} = 12\sqrt{3}$ 

故兩對角線長之和為 12+12√3

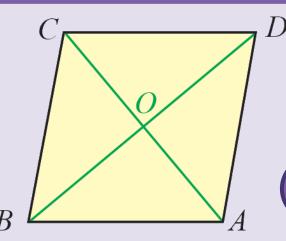
 ${\it 442} = 180^{\circ} - 30^{\circ} - 90^{\circ} = 60^{\circ}$ 

我們知道「菱形的兩對角線互相垂直平分」。 反過來說,兩對角線互相垂直平分的四邊形是菱形嗎?



3 菱形的判別性質:兩對角線互相垂直平分 搭配課本p207

如右圖,四邊形 ABCD 中, $\overline{AC}$  與  $\overline{BD}$  交於 O點,若  $\overline{OA} = \overline{OC}$ , $\overline{OB} = \overline{OD}$ ,且  $\overline{AC} \perp \overline{BD}$ , 則四邊形 ABCD 是菱形嗎?





解
$$(1)$$
:: $\overline{OB} = \overline{OD}$ ,且 $\overline{AC} \perp \overline{BD}$ ,

$$\therefore \overrightarrow{AC} \stackrel{\cdot}{=} \overrightarrow{BD}$$
的中垂線,得 $\overrightarrow{AB} = \overrightarrow{AD} \cdot \overrightarrow{CB} = \overrightarrow{CD}$ 。



$$...\overline{BA} = \overline{BC} \cdot \overline{DA} = \overline{DC} \cdot \Box \overline{AB} = \overline{BC} = \overline{CD} = \overline{DA} \circ$$

(3): 四邊相等,:.四邊形 ABCD 是菱形。



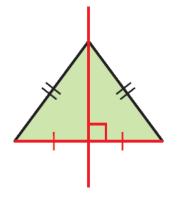




也就是說,兩對角線互相垂直平分的四邊形是菱形。

#### 學習時光機

一線段的中垂線上任一點與此線段的兩端點等距離。











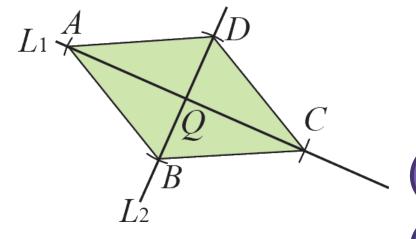
如右圖  $\cdot L_1$  垂直  $L_2$  於 Q 點。

故四邊形 ABCD 即為菱形

在 $L_1$ 上取 $A \cdot C$  兩點,使 $\overline{AQ} = \overline{CQ}$ ,

在 $L_2$ 上取 $B \setminus D$  兩點,使 $\overline{BQ} = \overline{DQ}$ ,

試說明四邊形 ABCD 為菱形的理由。











由 $L_1$ 垂直 $L_2$ 於Q點,且 $\overline{AQ} = \overline{CQ}$ , $\overline{BQ} = \overline{DQ}$ 得四邊形ABCD的兩對角線互相垂直平分



菱形的兩對角線互相垂直,那麼兩對角線互相垂直的四邊形

是菱形嗎?說說你的看法。

兩對角線互相垂直的四邊形不一定是菱形, 如右圖







#### 菱形的面積=兩對角線長的乘積÷2

說明如右圖,菱形 ABCD中,

對角線 $\overline{AC}$ 、 $\overline{BD}$  互相垂直於O點,

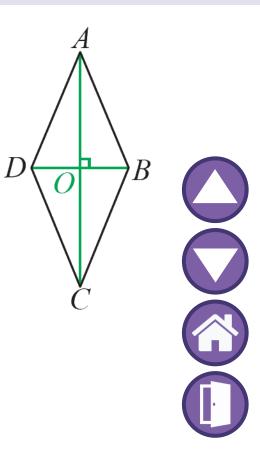
則菱形 ABCD 面積

$$= \triangle ABD$$
 面積  $+ \triangle BCD$  面積

$$= \frac{1}{2}\overline{BD} \times \overline{OA} + \frac{1}{2}\overline{BD} \times \overline{OC}$$

$$= \frac{1}{2}\overline{BD} \times (\overline{OA} + \overline{OC}) = \frac{1}{2}\overline{BD} \times \overline{AC} \circ$$

因此菱形 ABCD 面積 = 兩對角線長的乘積÷2。

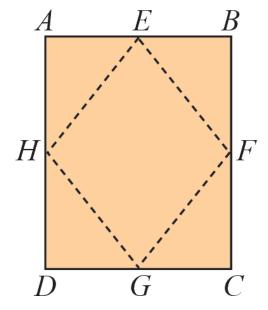


同理,兩對角線互相垂直的四邊形,其面積等於兩對角線長的乘積的一半。





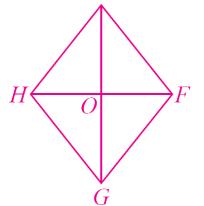
如右圖,四邊形 ABCD 為一張長方形的色紙,已知  $\overline{AB}=16$  公分, $\overline{BC}=20$  公分。若取各邊的中點剪去四個角,剩下的圖形恰好為菱形 EFGH,則菱形的周長和面積各為多少?





#### 如右圖

$$\overline{OH} = \frac{1}{2}\overline{HF} = 8 , \overline{OE} = \frac{1}{2}\overline{EG} = 10$$
$$\therefore \overline{EH} = \sqrt{8^2 + 10^2} = 2\sqrt{41}$$



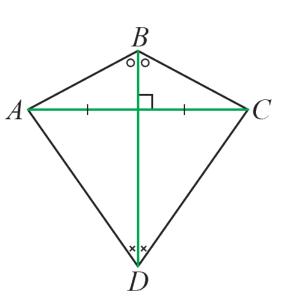
因此菱形 *EFGH* 的周長= $4\overline{EH}$ = $4\times2\sqrt{41}$ = $8\sqrt{41}$  (公分)

菱形 
$$EFGH$$
 面積  $=\frac{1}{2} \times \overline{HF} \times \overline{EG} = \frac{1}{2} \times 16 \times 20 = 160$ (平方公分)

#### 箏形

#### 箏形是兩雙鄰邊分別等長的四邊形。

在第 112 頁中,我們知道如右圖的等  $A^{*}$  形 ABCD 中,對角線  $\overline{BD}$  為對稱軸,利用線對稱概念,可知  $\overline{BD}$  為另一條對角線  $\overline{AC}$  的中垂線,並平分  $\angle ABC$  及  $\angle ADC$ 。接著利用以上性質做練習。









#### 重新布題

### 搭配課本p209

如右圖,小毅想製作一只風箏,首先他在紙上剪出一個箏

形 ABCD,其中  $\overline{AB} = \overline{AD} = 10\sqrt{2}$ 、 $\overline{BC} = \overline{CD} = 10\sqrt{5}$ ,

 $\angle BAD = 90^{\circ}$ ,接著再準備兩根竹棍固定在對角線上,若不

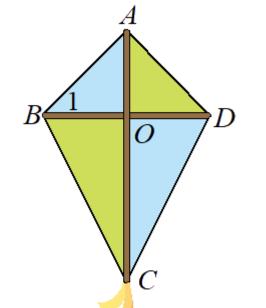
計竹棍的寬度,則:

(1) ∠1 為多少度?

$$\therefore \overline{AB} = \overline{AD} \cdot \angle BAD = 90^{\circ}$$

∴△BAD 為等腰直角三角形

故
$$\angle 1 = (180^{\circ} - 90^{\circ}) \div 2 = 45^{\circ}$$











如右圖,<u>小毅</u>想製作一只風箏,首先他在紙上剪出一個箏

形 ABCD,其中  $\overline{AB} = \overline{AD} = 10\sqrt{2}$ 、 $\overline{BC} = \overline{CD} = 10\sqrt{5}$ ,

 $\angle BAD = 90^{\circ}$ ,接著再準備兩根竹棍固定在對角線上,若不

計竹棍的寬度,則:

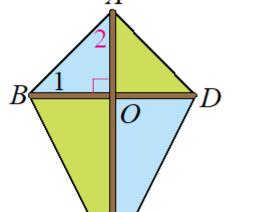
(2)兩根竹棍的長度分別為多少?

$$\therefore \angle 2 = 90^{\circ} - \angle 1 = 45^{\circ}$$

 $\therefore \triangle AOB$  為等腰直角三角形,得 $\overline{AO} = \overline{BO}$ 

$$\overline{BD} = \sqrt{(10\sqrt{2})^2 + (10\sqrt{2})^2} = 20$$
,

得
$$\overline{AO} = \overline{BO} = \frac{1}{2}\overline{BD} = 10$$













如右圖,小毅想製作一只風箏,首先他在紙上剪出一個箏

形 ABCD , 其中  $\overline{AB} = \overline{AD} = 10\sqrt{2}$  、  $\overline{BC} = \overline{CD} = 10\sqrt{5}$  ,

 $\angle BAD = 90^{\circ}$ ,接著再準備兩根竹棍固定在對角線上,若不

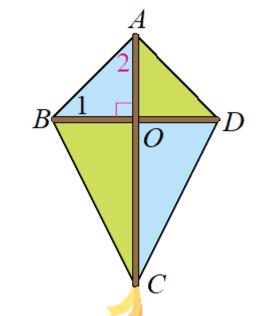
計竹棍的寬度,則:

(2)兩根竹棍的長度分別為多少?



得
$$\overline{AC} = \overline{AO} + \overline{OC} = 30$$

故兩根竹棍長分別為20、30











在第 208 頁提到,兩對角線互相垂直的四邊形面積等 於兩對角線長的乘積的一半,因此**等形面積也會等於兩對 角線長的乘積的一半**。





等形是兩雙鄰邊分別等長的四邊形,那麼等形是否為平行四邊形呢?說說你的看法。

等形是兩雙鄰邊分別等長的四邊形,而平行四邊形是兩雙 對邊分別等長的四邊形,所以等形不一定是平行四邊形







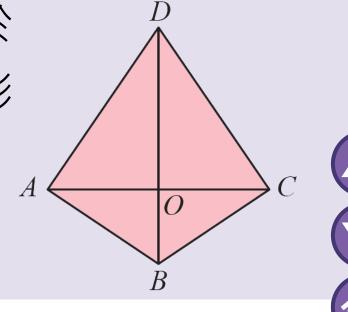
我們知道「箏形的一條對角線會垂直平分另一條對角線」。反過來說,一條對角線垂直平分另一條對角線的四邊形是箏形嗎?



等形的判別性質:一條對角線垂直平分另一條對**角**線

搭配課本p210

如右圖,四邊形 ABCD 中, $\overline{AC}$  與  $\overline{BD}$  交於 O 點,若  $\overline{BD}$  垂直平分  $\overline{AC}$ ,則四邊形 ABCD 是筝形嗎?





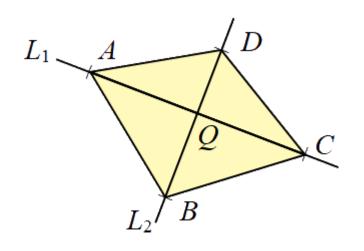
解  $: \overline{BD}$  垂直平分  $\overline{AC}$ 

由中垂線性質可知  $\overline{DA} = \overline{DC}$ ,  $\overline{BA} = \overline{BC}$ 即四邊形 ABCD 為箏形





如右圖, $L_1$  垂直  $L_2$  於 Q 點。在  $L_1$  上取  $A \cdot C$  兩點,使  $\overline{AQ} = \overline{CQ}$ ,在  $L_2$  上取  $B \cdot D$  兩點,且  $B \cdot D$  在  $L_1$  的兩側。試說明 四邊形 ABCD 為箏形的理由。











由 $L_1$ 垂直 $L_2$ 於Q點,且 $\overline{AQ} = \overline{CQ}$ 即 $\overline{BD}$ 垂直平分 $\overline{AC}$ 

故四邊形 ABCD 為箏形

#### 正方形

#### 正方形是四個角都是直角且四個邊都相等的四邊形。

- 1. 因為正方形四個內角都是直角, 所以正方形也是長方形,它的兩對角線相等且互相平分。
- 2. 因為正方形的四個邊等長, 所以正方形是菱形,它的兩對角線互相垂直平分。
- 由上可知,正方形的兩對角線相等且互相垂直平分。





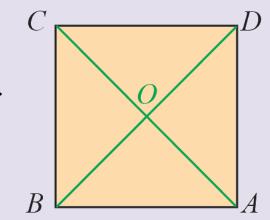




# 例(5) 正方形的對角線性質

#### 搭配課本p211

如右圖,O 為正方形 ABCD 對角線的交點,且  $\overline{BD} = 6$ ,則正方形 ABCD 的周長與面積分別為多少?











::正方形的兩對角線相等且互相垂直平分,

$$...\overline{OA} = \overline{OB} = \overline{OC} = \overline{OD} = 3$$

由畢氏定理可知, $\overline{AB} = \sqrt{3^2 + 3^2} = 3\sqrt{2}$ 。

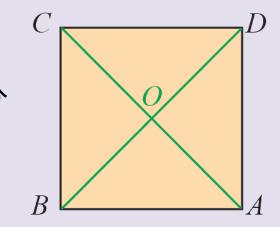
故正方形 ABCD 的周長= $4\times3\sqrt{2}=12\sqrt{2}$ ,

正方形 ABCD 的面積  $= 3\sqrt{2} \times 3\sqrt{2} = 18$ 。

# 例(5) 正方形的對角線性質

搭配課本p211

如右圖,O 為正方形 ABCD 對角線的交點,且  $\overline{BD} = 6$ ,則正方形 ABCD 的周長與面積分別為多少?















正方形 ABCD 面積也可以這樣算:

$$\frac{1}{2}$$
×6×6=18  $\circ$ 

#### 隨堂練習



### 搭配課本p211

若 ABCD 為正方形,且  $A \cdot C$  兩點坐標分別為(5,3)、(1,3),則  $B \cdot D$  兩點坐標分別為多少?



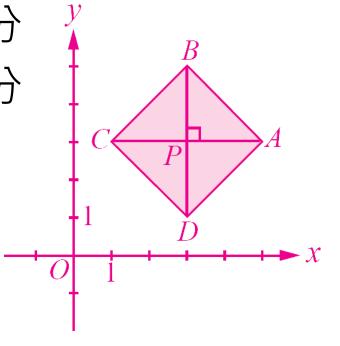
如右圖,

$$\overline{BD} = \overline{AC} = 5 - 1 = 4$$

$$\overline{PA} = \overline{PB} = \overline{PC} = \overline{PD} = 4 \div 2 = 2$$

故 B 點坐標為(1+2,3+2)=(3,5)

$$D$$
點坐標為 $(5-2,3-2)=(3,1)$ 







主題 2

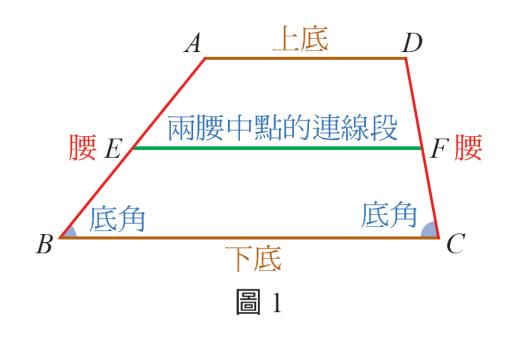
國小曾學過:一組對邊平行,另一組對邊不平行的四 邊形稱為梯形,如圖 1 梯形 ABCD 中,平行的兩邊分別稱 為上底與下底,不平行的兩邊稱為腰,而腰與下底形成的 夾角稱為底角。













此外,若  $E \cdot F$  分別為兩腰  $\overline{AB}$  與  $\overline{CD}$  的中點,則  $\overline{EF}$  稱為 梯形 ABCD 兩腰中點的連線段。

梯形兩腰中點的連線段有什麼性質呢?我們來看下面的問題探索。











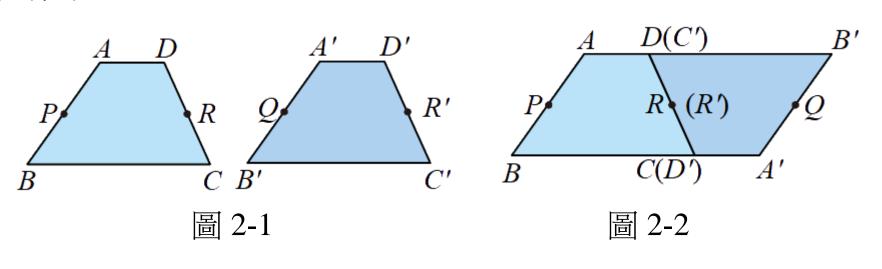
#### 梯形兩腰中點連線段的性質

## 搭配課本p212

附件 6

《可搭配附件6操作》

如圖 2-1,有兩個全等的梯形,其中  $P \cdot R \cdot Q \cdot R'$  分別是  $\overline{AB} \cdot \overline{CD} \cdot \overline{A'B'} \cdot \overline{C'D'}$  的中點。如圖 2-2,將這兩個梯形拼 在一起,使得 C' 點與 D 點重疊,D' 點與 C 點重疊,試回 答下列問題:













### 梯形兩腰中點連線段的性質

- $(1) \angle D + \angle C'$  是不是  $180^{\circ}$  ?是  $A \cdot C' \cdot B'$  三點是否共線?是  $\angle C + \angle D'$  是不是  $180^{\circ}$  ?是  $B \cdot D' \cdot A'$  三點是否共線?是
- (2)四邊形 ABA'B' 是平行四邊形嗎?為什麼? 是,因為兩雙對邊分別等長
- (3) R 點與 R' 點是否重合? $P \cdot R(R') \cdot Q$  三點是否共線?是,  $\Box \angle DRP + \angle DR'Q = 180^{\circ}$ ,  $\Box P \cdot R(R') \cdot Q$  三點共線
- (4)四邊形 APQB' 是否為平行四邊形?為什麼?是,因為  $\overline{AP} = \overline{B'Q}$ ,且  $\overline{AP}$  //  $\overline{B'Q}$









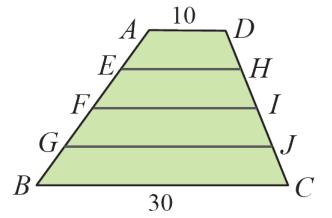
由問題探索可知:

::四邊形 ABA'B' 與四邊形 APQB' 均為平行四邊形,

梯形兩腰中點的連線段會與上下底平行,且長度等於兩 底和的一半。



如右圖,梯形 ABCD 中, $\overline{AD}$  //  $\overline{BC}$ , $\overline{E}$ 、  $F \cdot G$  將  $\overline{AB}$  四等分, $H \cdot I \cdot J$  將  $\overline{DC}$  四等分。若  $\overline{AD} = 10cm$ , $\overline{BC} = 30cm$ ,則  $\overline{EH} \cdot \overline{FI} \cdot \overline{GJ}$  的長度分別為多少?











解 
$$\overline{FI} = \frac{1}{2}(\overline{AD} + \overline{BC}) = \frac{1}{2} \times (10 + 30) = 20(cm)$$
  
 $\overline{EH} = \frac{1}{2}(\overline{AD} + \overline{FI}) = \frac{1}{2} \times (10 + 20) = 15(cm)$   
 $\overline{GJ} = \frac{1}{2}(\overline{FI} + \overline{BC}) = \frac{1}{2} \times (20 + 30) = 25(cm)$ 

我們知道梯形面積 $=\frac{(上底+下底)}{2}$ x高,

又梯形兩腰中點的連線段長=(上底+下底) 2

所以梯形的面積一梯形兩腰中點的連線段長x高。





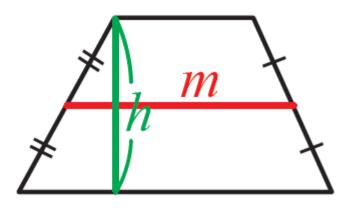






## 圖解筆記





面積 $=m\times h$ 







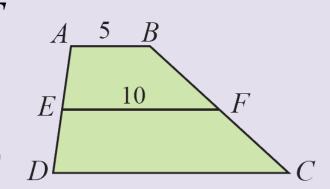




## 例(6)梯形兩腰中點連線段的性質之應用

搭配課本p214

如右圖,梯形 ABCD 中, $\overline{AB}$  //  $\overline{CD}$ , $\overline{EF}$  為梯形兩腰中點的連線段。若  $\overline{AB} = 5cm$ 、  $\overline{EF} = 10cm$ ,梯形的高為 8cm,則  $\overline{CD}$  及梯 形 ABCD 的面積分別為多少?







$$:\overline{EF} = \frac{\overline{AB} + \overline{CD}}{2}, :10 = \frac{5 + \overline{CD}}{2},$$



得 $\overline{CD} = 15(cm)$ 。

梯形 ABCD 的面積=梯形兩腰中點的連線段長x高 =  $10x8 = 80(cm^2)$ 

有一梯形兩腰中點的連線段長為 10 公分, 高為 5 公分, 求此梯形面積。

解梯形面積-梯形兩腰中點的連線段長x高

- =10x5
- =50(平方公分)





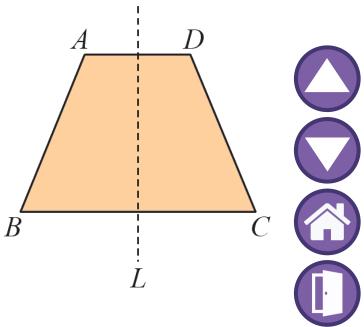




#### 等腰梯形的性質

若梯形的兩腰相等,就稱為等腰梯形。 在七年級時,我們利用摺紙學過等腰梯 形是線對稱圖形。如右圖,L 是等腰梯形的 對稱軸,而A 點的對稱點為 $D \cdot B$  點的對稱 點為C,故L 同時為上底 $\overline{AD}$ 、下底 $\overline{BC}$  的 中垂線。

下面我們來看等腰梯形的其他性質。



#### 學習時光機

線對稱圖形的對稱軸是 任意兩對稱點連接線段 的垂直平分線。



#### 1. 等腰梯形的兩底角相等。

說明 如右圖,等腰梯形 ABCD中,

$$\overline{AD}$$
 //  $\overline{BC}$  ,  $\overline{AB} = \overline{CD}$   $\circ$ 

先從 $A \cdot D$  兩點分別作底邊的高,



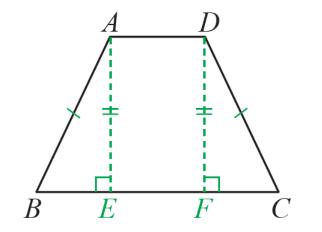


在 $\triangle ABE$  和 $\triangle DCF$  中,

$$\therefore \overline{AB} = \overline{CD} \cdot \overline{AE} = \overline{DF} \cdot \angle AEB = \angle DFC = 90^{\circ}$$

$$∴ \triangle ABE \cong \triangle DCF(RHS)$$
 全等性質),

得
$$\angle B = \angle C$$
,且 $\overline{BE} = \overline{CF}$ 。











如右圖,等腰梯形 ABCD 中,已知  $\overline{AD}$  //

$$\overline{BC}$$
, $\angle A + \angle D = 260^{\circ}$ ,求 $\angle B$ 的度數。

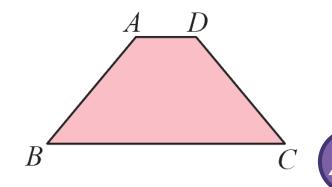
解

等腰梯形兩底角相等,即 $\angle B = \angle C$ 

$$\therefore \angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\therefore 260^{\circ} + 2 \angle B = 360^{\circ}$$

得
$$\angle B = 50^{\circ}$$









#### 2. 等腰梯形的兩對角線相等。

說明 如右圖,

 $\overline{AC}$ 、 $\overline{BD}$  為等腰梯形 ABCD 的對角線,

在 $\triangle ABC$ 和 $\triangle DCB$ 中,

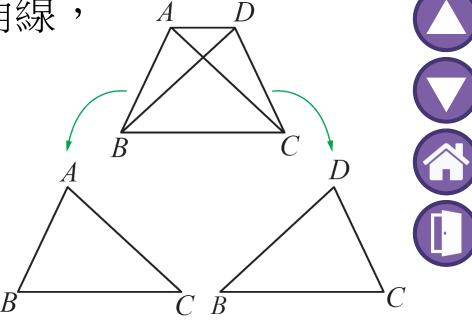
$$\therefore \overline{AB} = \overline{CD}$$
,

$$\angle ABC = \angle DCB$$
,

$$\overline{BC} = \overline{BC}$$
,

∴ △ABC≅△DCB(SAS 全等性質)

得
$$\overline{AC} = \overline{BD}$$
。



## Key point 等腰梯形的性質

- 1. 等腰梯形的兩底角相等。
- 2. 等腰梯形的兩對角線相等。

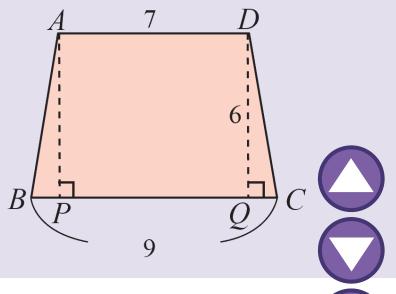




## 例(7)等腰梯形的對角線長

## 搭配課本p216

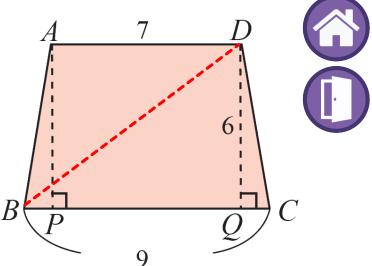
如右圖,等腰梯形 ABCD 中, $\overline{AD}$  //  $\overline{BC}$ , 過  $A \cdot D$  分別作  $\overline{BC}$  的垂直線段,垂足為  $P \cdot Q$ ,若  $\overline{AD} = 7 \cdot \overline{BC} = 9 \cdot \overline{AP} = \overline{DQ} = 6$ , 則這個等腰梯形的對角線長度為多少?



解

如右圖,連接 $\overline{BD}$ ,

$$\overline{BP} = \overline{CQ} = \frac{9-7}{2} = 1$$
, $\overline{BQ} = 1+7=8$ ,由畢氏定理得  $\overline{BD} = \sqrt{6^2 + 8^2} = 10$ ,故等腰梯形的兩條對角線長度都是 10。



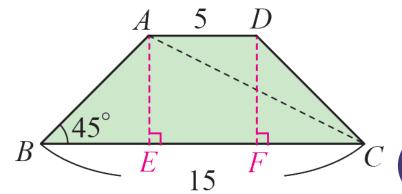
#### 隨堂練習

## 搭配課本p217

如右圖,等腰梯形 ABCD 中, $\overline{AD}$  //

$$\overline{BC}$$
 · 若  $\overline{AD} = 5cm$  ·  $\overline{BC} = 15cm$  ·  $\angle B$ 

 $=45^{\circ}$ ,則對角線 $\overline{AC}$ 的長度為多少?





解

如右圖,過 $A \cdot D$  兩點分別作垂直 $\overline{BC}$  的線段



則
$$\overline{BE} = (15-5) \div 2 = 5$$
, $\overline{CE} = 15 - \overline{BE} = 15 - 5 = 10$ 

 $abla \triangle ABE \Leftrightarrow ,$ 

$$\angle BAE = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}$$
,  $\therefore \overline{AE} = \overline{BE} = 5$ 

故
$$\overline{AC} = \sqrt{\overline{AE}^2 + \overline{CE}^2} = \sqrt{5^2 + 10^2} = 5\sqrt{5}$$
 (cm)





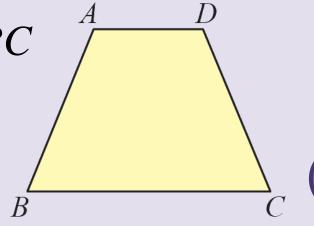


我們知道**「等腰梯形的兩底角相等」**,反過來說,兩 底角相等的梯形會是等腰梯形嗎?



如右圖,梯形 ABCD 中, $\overline{AD}$  //  $\overline{BC}$ ,若  $\angle ABC$ 

 $= \angle DCB$  ,則梯形 ABCD 是等腰梯形嗎?





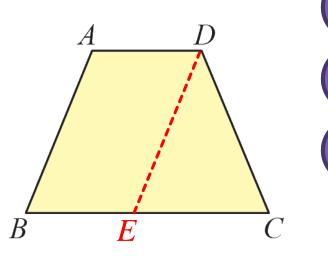
(1)過D點作 $\overline{DE}$ // $\overline{AB}$ ,與 $\overline{BC}$ 交於E點,

得 $\angle ABC = \angle DEC$ 。

 $\therefore \overline{AD} // \overline{BC}$ ,且 $\overline{DE} // \overline{AB}$ ,

二四邊形 ABED 是平行四邊形,

得 $\overline{AB} = \overline{DE}$ 。

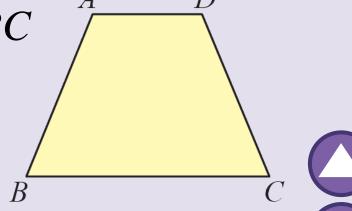


例(8)等腰梯形判別性質:兩底角相等的梯形是等腰梯形

## 搭配課本p217

如右圖,梯形 ABCD 中, $\overline{AD}$  //  $\overline{BC}$ ,若  $\angle ABC$ 

 $= \angle DCB$  ,則梯形 ABCD 是等腰梯形嗎?



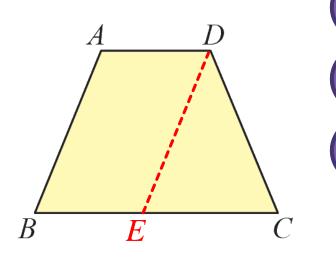


(2)由已知及(1),得 $\angle DEC = \angle DCE$ ,

即△DEC 為等腰三角形,

得 $\overline{DE} = \overline{DC}$ ,故 $\overline{AB} = \overline{DC}$ ,

即梯形 ABCD 為等腰梯形。





已知有四個四邊形,將它們的四個內角依 $\angle A$ 、 $\angle B$ 、

 $\angle C \setminus \angle D$  的順序寫在下面,則哪些會是等腰梯形

ABCD?

甲:60°·120°·120°·60° 乙:70°·110°·70°·110°

丙: 100°, 80°, 80°, 100° 丁: 130°, 50°, 130°, 50°

解答: 甲、丙。







### 1 特殊四邊形的對角線性質

|    | 長方形                   | 菱形                    | 筝形                                         | 正方形                     |      |
|----|-----------------------|-----------------------|--------------------------------------------|-------------------------|------|
| 圖形 | ***                   | #                     |                                            | ***                     |      |
| 性質 | 兩條對角線<br>相等且互相<br>平分。 | 兩條對角線 互相垂直平分,且平分四個內角。 | 其中一條對<br>角線垂直平<br>分另一條對<br>角線,且平<br>分兩個內角。 | 兩條對角線<br>相等且互相<br>垂直平分。 | 文教事業 |











#### 2 菱形與箏形面積公式

菱形與箏形面積都是「兩對角線長的乘積÷2」。









#### 3 梯形兩腰中點連線段

(1)性質:①梯形兩腰中點的連線段平行兩底。



$$=\frac{(上底+下底)}{2}$$
x高

-梯形兩腰中點的連線段長x高。









### 4 等腰梯形的性質

- (1)等腰梯形的底角相等。
- (2)等腰梯形的對角線相等。









#### 5 特殊四邊形的包含關係

- (1)正方形是菱形,也是長方形。
- (2)長方形、菱形、正方形都是平行四邊形。





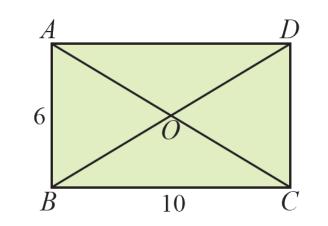




# 自我評量

## 搭配課本p219

 $\mathbf{1}$  如右圖,長方形 ABCD 中, $\overline{AB} = 6cm$ , $\overline{BC} = 10cm$ ,求兩對角線的和為多少?





::長方形的對角線等長

$$\overline{BD} = \overline{AC} = \sqrt{10^2 + 6^2} = 2\sqrt{34}$$

∴兩對角線的和= $\overline{BD} + \overline{AC} = 2\sqrt{34} + 2\sqrt{34} = 4\sqrt{34}$  (cm)





2 如右圖,菱形 ABCD 中,對角線  $\overline{AC}$  與  $\overline{BD}$  交於 O 點。若

$$\overline{BC} = 25$$
, $\overline{AC} = 14$ ,則 $\overline{BD}$  長為多少?

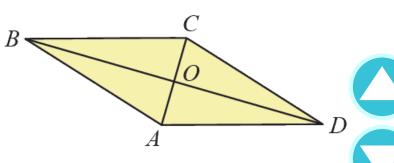


::菱形的兩條對角線互相垂直且平分

$$...\overline{OC} = 7$$

$$\overline{OB} = \sqrt{25^2 - 7^2} = 24$$

因此
$$\overline{BD} = 24 \times 2 = 48$$









3 有一個梯形兩腰中點的連線段長與高等長,且面積等於  $49cm^2$ ,則此梯形兩底之和為多少?



設梯形兩腰中點的連線段長為 x(cm)

由題意可知  $x^2=49$ ,  $x=\pm 7$ (負不合)

兩底之和為梯形兩腰中點的連線段長的兩倍

得 7×2=14(cm)











4 關於下列各種四邊形的對角線性質,正確的在空格中打✓。

| 性質四邊形 | 對角線<br>互相平分 | 對角線<br>互相垂直 | 對角線等長    |
|-------|-------------|-------------|----------|
| 平行四邊形 | <b>✓</b>    |             |          |
| 長方形   | <b>✓</b>    |             | ✓        |
| 菱形    | <b>✓</b>    | <b>✓</b>    |          |
| 箏形    |             | <b>✓</b>    |          |
| 正方形   | <b>✓</b>    | <b>✓</b>    | <b>✓</b> |
| 等腰梯形  |             |             | <b>✓</b> |









5 四邊形 ABCD 中,兩條對角線  $\overline{AC}$  與  $\overline{BD}$  相交於 O 點。 從下面三個條件 (A)、(B)、(C) 中,挑出最少的條件,使 四邊形 ABCD 分別成為菱形、長方形、正方形與平行四 邊形。











(A) 
$$\overline{AC} \perp \overline{BD}$$

$$(B) AC = BD$$

(A) 
$$\overline{AC} \perp \overline{BD}$$
 (B)  $\overline{AC} = \overline{BD}$  (C)  $\overline{AO} = \overline{CO}$ ,  $\overline{BO} = \overline{DO}$ 

(1)菱形: (A)、(C)。

(2)長方形: **(B)、(C)**。

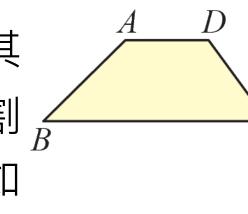
(3)正方形: **(A)、(B)、(C)。** 

(4)平行四邊形: (C)

## 自我評量

## 搭配課本p220

課堂上,老師請同學在右圖的梯形 ABCD (其 中 $\overline{AD}//\overline{BC}$ , $\overline{AB} \neq \overline{CD}$ )上畫一條線段,使其分割 的兩個圖形面積相等。小妍與小翊的說法如 下。判斷他們的說法是否正確,並說明你的 理由。











分別取 $\overline{AD}$ 、 $\overline{BC}$ 的中點E、F, 則EF即為所求。

作 $\overline{BC}$ 的中垂線,與 $\overline{AD}$ 、 $\overline{BC}$ 分別交於  $P \cdot Q$  兩點,則  $\overline{PQ}$ 即為所求。





挑錯題

小妍: ☑正確; □錯誤,

理由:分割的兩個梯形的高相等,且上下底的

和也相等,故兩圖形的面積相等

<u>小翊</u>:□正確;☑錯誤,

理由:分割的兩個梯形雖然高相等,

但上下底之和不相等





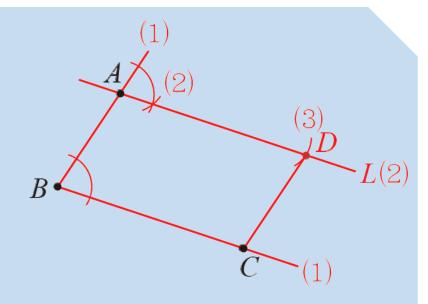






學完本章的數學概念後,你可以翻到書末的數桌遊(P.[8] (P), 熟練特殊四邊形性質的判別。

如右圖, $A \times B \times C$  為同一平面上不共線的三點。求作一點 D,使得四邊形 ABCD 為平行四邊形。













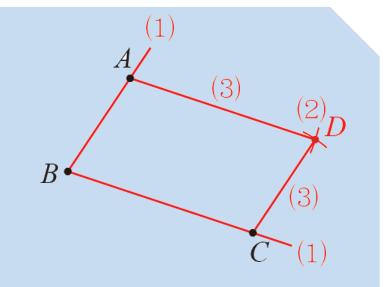


- (2)過 A 點作  $L // \overline{BC}$ 。
- (3)在L上取一點D,使得BC=AD。 連接 $\overline{CD}$ ,則四邊形ABCD即為所求。





如右圖 $,A \setminus B \setminus C$  為同一平面上不共 線的三點。求作一點 D,使得四邊形 ABCD 為平行四邊形。



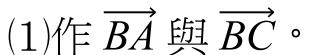


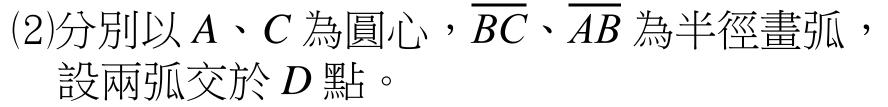






#### 利用平行四邊形「兩雙對邊分別相等」判別性質





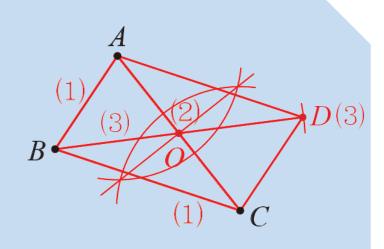
(3)連接 $\overline{AD}$ 、 $\overline{CD}$ ,則四邊形ABCD 即為所求。







如右圖, $A \setminus B \setminus C$  為同一平面上不共 線的三點。求作一點 D,使得四邊形 ABCD 為平行四邊形。















- (2)連接 $\overline{AC}$ ,取 $\overline{AC}$ 中點為O點。
- (3)連接 $\overline{BO}$ ,並延長 $\overline{BO}$ 到D點,使得 $\overline{BO} = \overline{OD}$ 。

連接 $\overline{AD}$ 、 $\overline{CD}$ ,則四邊形ABCD 即為所求。





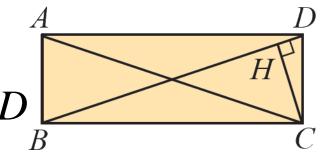




如右圖,長方形 ABCD 中,已知  $\overline{AC} = 13$ ,

 $\overline{CH}$ =4,且 $\overline{CH}$  $\bot$  $\overline{BD}$ 於H,則長方形ABCD

的面積為多少?





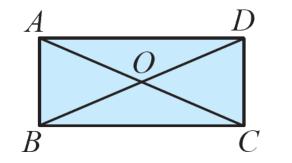






如右圖,長方形 ABCD 中,已知  $\overline{OB} = 13$ ,

 $\overline{BC}$ =24,則長方形 ABCD 的周長為多少?

















# 搭配課本p205

右圖中三個四邊形  $BCJK \cdot CDHI \cdot DEFG$  均為 矩形,且  $A \cdot B \cdot C \cdot D \cdot E$  五點在同一直線上。 已知  $I \cdot G$  兩點分別在  $\overline{CJ}$  與  $\overline{DH}$  上,且  $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE}$ 。若 $\triangle ABK$  的面積為  $a \cdot \triangle EFG \cdot ABK$ 

 $\triangle GHI \setminus \triangle IJK$  的面積和為  $b \cdot \mathbb{1}$  a : b = ?



(C) 1:3 (D) 2:3 【94年第一次基本學測】





(A)

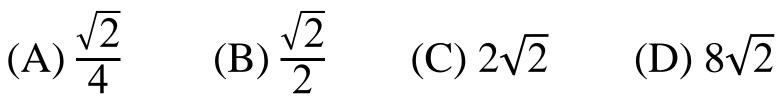
### 搭配課本p206

如右圖,有一菱形 ABCD, $\overline{AB}=4$ ,面積為  $2\sqrt{2}$ 。

若 $\overline{AD}$ 上有一點M,則M到直線BC的距離為

何?

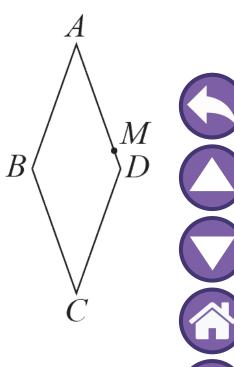
【98年第二次基本學測】



$$(B) \frac{\sqrt{2}}{2}$$

(C) 
$$2\sqrt{2}$$

(D) 
$$8\sqrt{2}$$





## 搭配課本p207

設  $A(-6,5) \setminus B(1,1) \setminus C(8,5) \setminus D(1,9)$ 為坐標平面上的四個點,則連接  $\overline{AB} \setminus \overline{BC} \setminus \overline{CD} \setminus \overline{DA}$  後,所得的四邊形

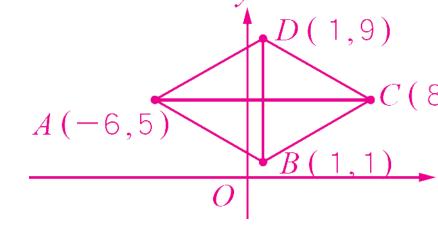
ABCD 為哪一種四邊形?四邊形 ABCD 的面積為多少?







(1)將四點坐標繪出如右圖所示 可知 BD 與 AC 互相垂直平分, 故四邊形 ABCD 為菱形



(2)因為四邊形 ABCD 為菱形

所以菱形 ABCD 的面積  $=\frac{1}{2} \times 14 \times 8 = 56$ 

一菱形的兩對角線長分別為 10 公分與 24 公分,求此菱形的面積與周長。

- 解
- (1)菱形的面積= $10 \times 24 \div 2 = 120$ (平方公分)
- (2)菱形的兩對角線互相垂直平分,10÷2=5,24÷2=12 所以菱形的邊長即為兩股長為5公分、12公分的 直角三角形的斜邊長

即菱形的邊長為  $\sqrt{5^2+12^2}=13$ 

故菱形的周長為 13×4=52(公分)





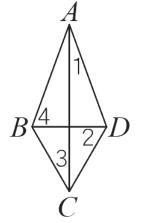


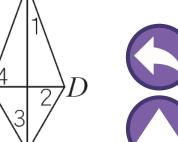






如右圖,ABCD 為箏形,其中 $\overline{AB} = \overline{AD}$ , $\overline{CB} = \overline{CD}$ 。 若 $\angle 1 = 20^{\circ}$ , $\angle 2 = 60^{\circ}$ ,則 $\angle 3$  和 $\angle 4$  的度數為多 少?















# 搭配課本p209

如右圖,ABCD 為箏形,其中 $\overline{AB} = \overline{AD} = 10$ ,

$$\overline{CB} = \overline{CD} = 17$$
,且 $\overline{AC}$ 、 $\overline{BD}$ 交於 $O$ 點。若 $\overline{BO}$ 

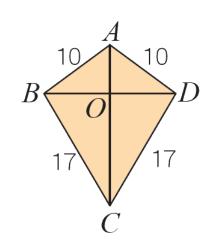
$$(1) \overline{AC} = ?$$

(2) 筝形 ABCD 的面積為多少?



(1)21

(2)168





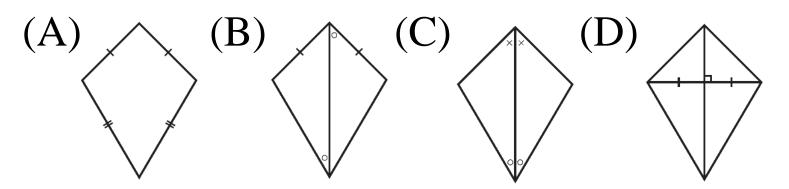








下列哪一個四邊形不一定是箏形?













(B)

#### 下列敘述何者錯誤?

- (A) 正方形是長方形
- (B) 正方形是菱形
- (C) 正方形是平行四邊形
- (D) 一對角線垂直平分另一條對角線的四邊形必為菱形



(D)





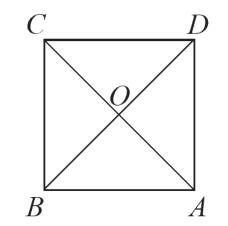








如右圖,O 為正方形 ABCD 對角線的交點,且  $\overline{AO}=5$ ,則正方形 ABCD 的周長與面積分別為 多少?













## 搭配課本p212

圖(一)為一梯形 ABCD,其中 $\angle C = \angle D = 90^{\circ}$ ,且 AD = 6,

 $\overline{BC} = 18 \cdot \overline{CD} = 12 \circ 若將 \overline{AD}$  疊合在  $\overline{BC}$  上,出現摺線



 $\overline{MN}$ ,如圖(二)所示,則 $\overline{MN}$ 的長度為何?



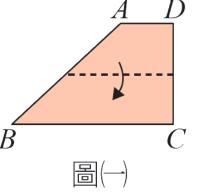
(A) 9

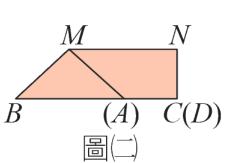
(B) 12

(C) 15

(D) 21

【96年第一次基本學測】















梯形上、下底的比是 2:5,且上、下底的差是 12 公分, 則梯形兩腰中點的連線段長為多少公分?



14公分





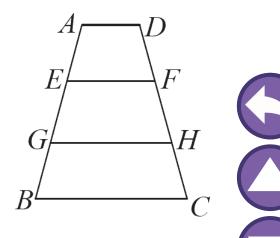






# 搭配課本p213

如右圖,梯形 ABCD 的高為 10, $\overline{AD}$  //  $\overline{EF}$  //  $\overline{GH}$  //  $\overline{BC}$ ,且  $\overline{AE} = \overline{EG} = \overline{GB}$ , $\overline{DF} = \overline{FH} = \overline{HC}$ 。若  $\overline{EF} = 5$ , $\overline{GH} = 7$ ,則梯形 ABCD 的面積為多 少?











## 搭配課本p214

如右圖,梯形 ABCD 的兩底長為  $\overline{AD} = 6$ , $\overline{BC}$ 

=10,兩腰中點的連線段為 $\overline{\mathit{EF}}$ ,且 $\angle \mathit{B} = 90^\circ$ 。

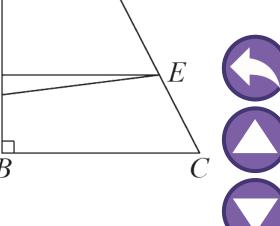
若 P 為  $\overline{AB}$  上的一點,且  $\overline{PE}$  將梯形 ABCD 分

成面積相同的兩區域,則 $\triangle EFP$ 與梯形 ABCD

的面積比為何?

【99年第一次基本學測】

(A) 1:6 (B) 1:10 (C) 1:12 (D) 1:16











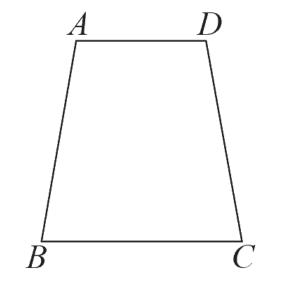
# 搭配課本p215

如右圖,ABCD 為等腰梯形, $\overline{AD}$  //  $\overline{BC}$ ,

$$\angle A = 2x^{\circ} \cdot \angle B = (x+30)^{\circ} \cdot$$
則 $\angle C \cdot \angle D$ 

分別為多少度?

$$\angle C = 80^{\circ}$$
,  $\angle D = 100^{\circ}$ 











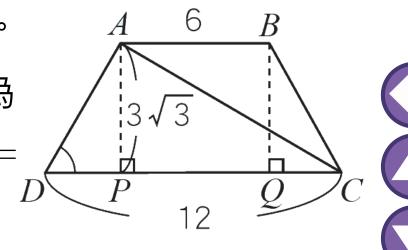
## 搭配課本p216

如右圖,等腰梯形 ABCD 中, $\overline{AB}$  //  $\overline{CD}$ 。

過 $A \setminus B$  分別作  $\overline{CD}$  的垂直線段,垂足為

$$P \cdot Q \cdot$$
若 $\overline{AB} = 6 \cdot \overline{CD} = 12 \cdot \overline{AP} = \overline{BQ} =$ 

 $3\sqrt{3}$ ,則對角線 $\overline{AC}$ =?









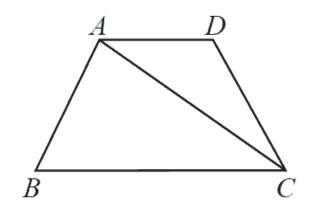


# 搭配課本p216

如右圖,等腰梯形ABCD中, $\overline{AD}$ // $\overline{BC}$ ,

且 $\overline{AD}$ =5公分, $\overline{BC}$ =11公分, $\overline{AC}$ =10公

分,則ABCD的面積為多少平方公分?

















下列敘述何者正確?

- (A)等腰梯形的對角線互相平分
- (B)兩底角相等的梯形一定是等腰梯形
- (C)對角線等長的四邊形一定是矩形
- (D)兩組對邊分別相等的四邊形一定是矩形

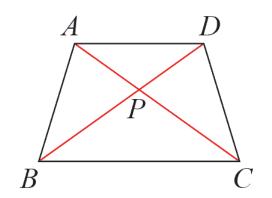


(B)



# 搭配課本p217

如右圖,已知四邊形ABCD為梯形,則加上 下列哪一個條件後,四邊形 ABCD 不一定成 為等腰梯形?















(A) 
$$\overline{AC} = \overline{BD}$$

(B) 
$$\overline{AP} = \overline{DP}$$

(C) 
$$\overline{AC} \perp \overline{BD}$$

(D) 
$$\angle ABC = \angle DCB$$



