心教師用精益

1-2 週期性數學模型

主題一 週期性現象

- (配合課本 P.21~P.24)

- 1. 週期性現象指「周而復始」的規律現象。在美術、工藝或 建築上,「重複」更是設計與形成美感的一種常見手法。
- **2.** 函數的週期性就是一種模式的反覆出現。整個模式每重複一次,就稱為一個週期。

例題

生活中的週期

配合課本例題 1

有一家義大利麵餐廳推出自由配餐點,它有五種醬料與六種麵體提供客人自由選配。 且店家每日會推出一組搭配做特價,若醬料是按照青醬、蛋奶醬、紅醬、咖哩醬、白醬的順序,而麵體是按照螺旋麵、直條麵、貝殼麵、天使麵、筆尖麵、寬扁麵的順序做配對。

- (1) 店家的特價組合最少隔多少天會出現相同的組合?
- (2) 若今天特價組合是「青醬+天使麵」,則最快幾天後有「咖哩醬+筆尖麵」的特價組合?

素養題

- (1) 因為有 5 種醬料與 6 種麵體,所以店家共有 5×6=30 種不同的特價組合故每隔 30 天會出現相同的特價組合
 - (2) 因為醬料每 5 天會輪流一次 所以 3 天後、8 天後、13 天後、18 天後、……會使用咖哩醬 又麵體是每 6 天會輪流一次 所以 1 天後、7 天後、13 天後、19 天後、……會使用筆尖麵 故最快 13 天後有「咖哩醬+筆尖麵」的特價組合

類題

某宗教聖地在入門的廣場兩側,由入口處開始筆直地每隔8公尺就設立柱子裝飾該教七聖物做展示直到正殿門口。七種聖物分別為硨磲、金銀、瑪瑙、珊瑚、琉璃、琥珀和珍珠,依序輪流不斷地重複。已知在入口處(0公尺處)為硨磲的柱子,若小芬現在站在離入口處70公尺的地方,請問:

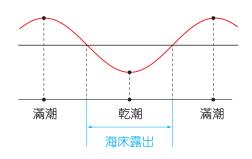
- (1) 離她最近的兩個柱子分別展示什麼聖物?
- (2) 若到正殿門口恰好是最後一個柱子,且每種聖物都展示7次,則<u>小芬</u>還要走多遠的 距離才會到達正殿?
- (1) 因為每隔 8 公尺就有一個展示柱,而 $\frac{70}{8}$ = 8.75 因此<u>小芬</u>站在入口處數來第 9 個和第 10 個柱子之間故離她最近的兩個柱子分別展示金銀和瑪瑙
 - (2) 因為總共有 49 個柱子,因此廣場的縱深總長為 $48 \times 8 = 384$ 公尺 所以小芬還要走 384-70=314 公尺

例題 二

自然中的週期

配合課本例題 2

若小甄計畫在9月13日或9月15日其中一天的下午2點到3點至奎壁山摩西分海景 點遊玩。已知海床露出期間如圖所示,其中海面上升至最高時稱為滿潮,下降至最低 時稱為乾潮。而當地9月12日到9月17日間的潮汐表(24小時制)如表。為了安全考 量,小甄要在乾潮後的一小時內離開此步道,請問她應該安排在哪一天到此處遊玩比 較合適?



日期	滿潮	乾潮
9月12日	10:10	16:33
9月13日	10:51	17:09
9月14日	11:28	17:39
9月15日	12:02	18:06
9月16日	12:36	18:32
9月17日	13:10	19:00

素養題

解 由潮汐表得知滿潮到乾潮約歷時 6 小時 預估滿潮後的3小時為海床開始露出的時間, 推估 9 月 13 日可參觀的時間為 13:51 至 18:09 而 9 月 15 日可參觀的時間為 15:02 至 19:06 因此小甄安排9月13日到該景點遊玩比較合適

類題

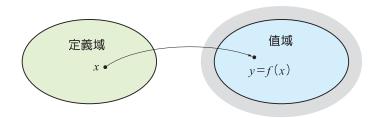
承例題 2, 若小甄更改在 9 月 14 日上午 8 點到 9 點、上午 10 點到 11 點, 或下午 4 點 到 5 點其中一時段至此遊玩,試問哪一個時段比較有機會踏上海中步道?

解 由潮汐表得知,9月14日可參觀時間約為14:28至18:39 故小甄應安排下午4點到5點前往遊玩

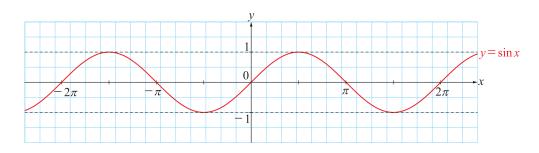
主題二正弦函數的圖形

- (配合課本 P.24~P.30) -

- 1. 給定一個函數 f(x),
 - (1) 自變數x所有可能值的最大範圍稱為此函數的定義域。
 - (2) 函數值 f(x) 所有可能值的最大範圍稱為此函數的值域。
 - (3) 函數除了要觀察x與f(x)的對應關係外,另一重點是觀察x值的變化所對應的f(x)值的變化。



- (4) 一般而言,對於函數 f(x) ,如果存在一個常數 T ,使得定義域內的每個 x 都滿足 f(x+T)=f(x) ,則我們稱 f(x) 為**週期函數** 。
- (5) 如果 T 是滿足 f(x+T)=f(x) 的最小正數,則稱 T 為函數 f(x) 之週期。
- **2.** 對於任意實數x,我們將其視為x 弳,並求出 $\sin x$ 的值。將x 與 $\sin x$ 對應起來會得到一個函數的對應關係,稱此為**正弦函數**,並以 $f(x) = \sin x$ 記之。
- 3. 正弦函數 $f(x) = \sin x$ 的圖形:
 - (1) $y = \sin x$ 的圖形:



- (2) 繪製正弦函數圖形時,可將角度為軸上角 $\left(\text{例如:0}, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \dots \right)$ 所對應的點先繪出,再用曲線將這些點連結。
- (3) 最好至少各標示一個波峰與一個波谷的坐標。

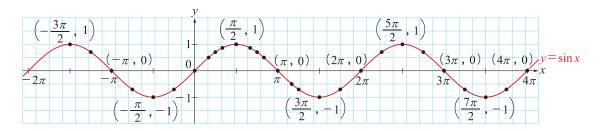
22

說明:

利用計算機可得下表的數值(四捨五入至小數點後第一位,同學可自行檢驗)

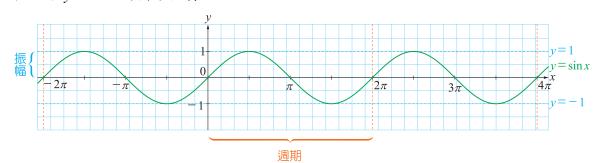
x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$\sin x$	0	0.5	0.7	0.9	1	0.9	0.7	0.5	0	-0.5	-0.7	-1	-0.7	0

х	$\frac{9\pi}{}$	5π	11π	3π	$\frac{13\pi}{1}$	$\frac{7\pi}{2}$	$\frac{15\pi}{1}$	4π	$-\frac{3\pi}{2}$	$-\frac{5\pi}{1}$	$-\pi$	$-\frac{3\pi}{1}$	$-\frac{\pi}{2}$	$-\frac{\pi}{\cdot}$
	4	2	4		4	2	4		2	4		4	2	4
$\sin x$	0.7	1	0.7	0	-0.7	-1	-0.7	0	1	0.7	0	-0.7	-1	-0.7



將x值當作橫坐標,所得的函數值y=f(x)當作縱坐標,分別將對應的點(x,y)標示在坐標平面上,再以平滑曲線將這些點連接起來,就可以得到函數 $f(x)=\sin x$ 的圖形。觀察可知有下列現象

- ① x 的值沒有任何限制。
- ② sinx 值介於-1 與 1 之間。
- ③ 圖形在直線 $y=\pm 1$ 之間擺動。
- ④ 正弦函數的圖形每 2π 單位長就會循環一次。
- 4. 正弦函數 $y = \sin x$ 的圖形性質:



- (1) 定義域為所有實數,值域為區間[-1,1]。
- (2) 振幅為1。
- (3) 週期為 2π。
- (4) 最高點的地方稱為波峰、最低點的地方稱為波谷。
- (5) 圖形對稱原點。
- (6) 正弦函數的圖形並不是由許多半圓或弓形所組成。

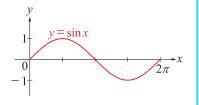
例題 =

正弦函數的圖形

配合課本例題 4

把正弦函數 $y = \sin x$ 的圖形想像成高高低低的山,則從原點 開始順著函數圖形往右走,試回答下列問題:

- (1) 試問走到 $x=5\pi$ 的時候是上坡還是下坡?
- (2) 承上題,還必須持續再走多遠的上坡或下坡路?



 \mathbf{M} (1) 因為正弦函數 $y = \sin x$ 的週期是 2π , 所以 $x=5\pi$ 的情形相當於 $x=3\pi$ 的情形, 同理相當於 $x=\pi$ 的情形 而由正弦函數的圖形知道 $x=\pi$ 的時候是下坡, 因此 $x=5\pi$ 的時候也是下坡

(2) 因為在 $x=\pi$ 到 $x=\frac{3\pi}{2}$ 這一段都是下坡 所以還必須持續走 $\frac{\pi}{2}\left(=\frac{3\pi}{2}-\pi\right)$ 單位的下坡路

Note

由於正弦函數圖形具有週期性 的現象。因此, 若 θ 在 $[0, 2\pi]$ 內的同界角為 α ,則 $x=\theta$ 時的 情形與 $x=\alpha$ 時的情形相同。

類題

把正弦函數 $y=\sin x$ 的圖形想像成高高低低的山,則從原點開始順著函數圖形往右 走,試回答下列問題:

- (1) 試問走到 $x = \frac{25\pi}{4}$ 的時候是上坡還是下坡?
- (2) 承上題,還必須持續再走多遠的上坡或下坡路?

解 (1) 因為
$$\frac{25\pi}{4} = 6\pi + \frac{\pi}{4}$$

所以 $x = \frac{25\pi}{4}$ 的情形相當於 $x = \frac{\pi}{4}$ 的情形

而由正弦函數的圖形知道 $x = \frac{\pi}{4}$ 的時候是上坡,

因此 $x = \frac{25\pi}{4}$ 的時候也是上坡

(2) 因為在 $x = \frac{\pi}{4}$ 到 $x = \frac{\pi}{2}$ 這一段都是上坡 所以還必須持續走 $\frac{\pi}{4}\left(=\frac{\pi}{2}-\frac{\pi}{4}\right)$ 單位的上坡路

主題三正弦函數圖形的平移與伸縮

- (配合課本 P.30~P.38)

1. 正弦函數 $y = \sin x$ 圖形的平移:

設h, k 皆為正數,則

- (1) 函數 $y = \sin x + k$ 的圖形是將 $y = \sin x$ 的圖形向上平移 k 個單位長。
- (2) 函數 $y = \sin x k$ 的圖形是將 $y = \sin x$ 的圖形向下平移 k 個單位長。
- (3) 函數 $y = \sin(x+h)$ 的圖形是將 $y = \sin x$ 的圖形向左平移 h 個單位長。
- (4) 函數 $v = \sin(x h)$ 的圖形是將 $v = \sin x$ 的圖形向右平移 h 個單位長。
- 2. 正弦函數 $y = \sin x$ 圖形的伸縮:

設a>0,則

- (1) 函數 $y=a \sin x$ 的圖形是將 $y=\sin x$ 的圖形上每一點的縱坐標都乘上 a 倍而得。
- (2) 函數 $y = \sin ax$ 的圖形是將 $y = \sin x$ 的圖形上每一點的橫坐標都乘上 $\frac{1}{a}$ 倍而得。
- 3. 平移不會改變圖形的週期與振幅。
- 4. 伸縮對週期與振幅的影響:

設a > 0,則

- (1) $y=a \sin x$ 的週期不變,振幅變為原來的 a 倍。
- (2) $y = \sin ax$ 的週期變為原來的 $\frac{1}{a}$ 倍 $\left($ 即週期變成 $\frac{2\pi}{a}\right)$,振幅不變。

正弦函數的平移一

配合課本例題 5、6

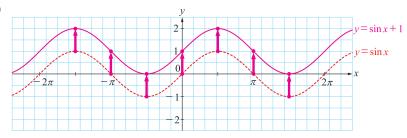
試利用 $y=\sin x$ 描繪出下列函數的圖形,並回答其定義域、值域、週期、振幅:

(1)
$$y = \sin x + 1$$

(2)
$$y = \sin\left(x - \frac{\pi}{2}\right)$$

Note

透過 $[0,2\pi]$ 軸上角的角度所對應的點,描繪出圖形。再利用週期性現象延伸出兩側的圖形。



 $y=\sin x+1$ 的圖形可由 $y=\sin x$ 的圖形向上平移 1 單位長而得

我們可以先在 $y = \sin x$ 的圖形上標出幾個點(可選最高點、最低點與x軸交點)

如
$$\left(-\frac{3\pi}{2},1\right)$$
, $\left(-\pi,0\right)$, $\left(-\frac{\pi}{2},-1\right)$, $\left(0,0\right)$, $\left(\frac{\pi}{2},1\right)$, $\left(\pi,0\right)$, $\left(\frac{3\pi}{2},-1\right)$ 等

把這些點全部向上平移1單位長,

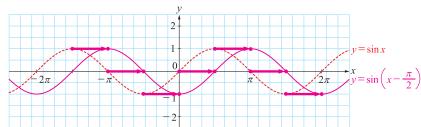
再依 $y = \sin x$ 圖形增加或減少的趨勢

將這些新點用平滑曲線連接起來,

就能得到 $y = \sin x + 1$ 的圖形

⇒ $y=\sin x+1$ 的週期為 2π ,振幅為 1,

定義域為任意實數,值域為[0,2]



$$y=\sin\left(x-\frac{\pi}{2}\right)$$
的圖形可由 $y=\sin x$ 的圖形向右平移 $\frac{\pi}{2}$ 單位長而得

我們仿照第(1)小題,將 $y=\sin x$ 若干關鍵點標出來

把這些點向右平移 $\frac{\pi}{2}$ 單位長,再依 $y=\sin x$ 圖形增加或減少的趨勢

將這些新點用平滑曲線連接起來,就能得到 $y=\sin\left(x-\frac{\pi}{2}\right)$ 的圖形

$$\Rightarrow y = \sin\left(x - \frac{\pi}{2}\right)$$
的週期為 2π ,振幅為 1 ,

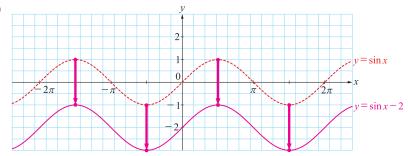
定義域為任意實數,值域為[-1,1]

試利用 $y=\sin x$ 描繪出下列函數的圖形,並回答其定義域、值域、週期、振幅:

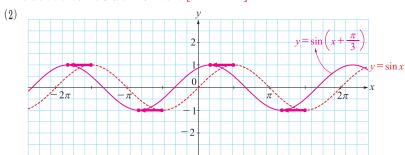
(1)
$$y = \sin x - 2$$

(2)
$$y = \sin\left(x + \frac{\pi}{3}\right)$$

(1)



 $y=\sin x-2$ 的圖形為 $y=\sin x$ 往下平移 2 單位,如上圖 所以 $y=\sin x-2$ 的週期為 2π ,振幅為 1, 定義域為任意實數,值域為 [-3,-1]



 $y = \sin\left(x + \frac{\pi}{3}\right)$ 的圖形為 $y = \sin x$ 往左平移 $\frac{\pi}{3}$ 單位,如上圖

所以 $y=\sin\left(x+\frac{\pi}{3}\right)$ 的週期為 2π ,振幅為1,

定義域為任意實數,值域為[-1,1]

心教師用精

例題 与

正弦函數的平移口

- (1) 試完成下列表格,並以描點方式繪出 $y = \sin\left(x + \frac{\pi}{3}\right) + 2$ 的圖形。
- (2) 承(1),請說明這個函數圖形與 $y=\sin x$ 的位置關係。
- (3) 承(1),試求函數的定義域、值域、週期、振幅。

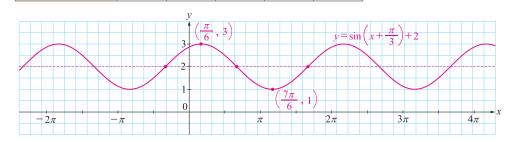
Note

作 $y = \sin x$ 的圖形,將 y 軸移到 $x = -\frac{\pi}{3}$ 的位置再重新標示 y 軸坐標,可得

 $y=\sin\left(x+\frac{\pi}{3}\right)$ 的圖形;同理,也可再移動x軸,得到 $y=\sin\left(x+\frac{\pi}{3}\right)+2$ 的圖形。

(1)

)	$x+\frac{\pi}{3}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
	x	$-\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{2\pi}{3}$	$\frac{7\pi}{6}$	$\frac{5\pi}{3}$
	$\sin\left(x+\frac{\pi}{3}\right)+2$	2	3	2	1	2



在坐標圖形上標出上列的點,並用曲線將其連接,再左右兩側重複圖形,如上圖

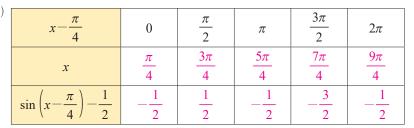
- (2) $y = \sin\left(x + \frac{\pi}{3}\right) + 2$ 的圖形為 $y = \sin x$ 的圖形往左平移 $\frac{\pi}{3}$ 單位,往上平移 2 單位
- (3) 因為最高點的y坐標為3,最低點的y坐標為1

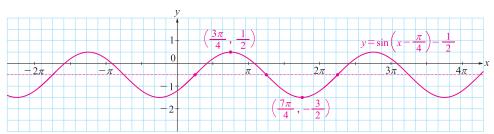
所以振幅為
$$\frac{3-1}{2}$$
 = 1, 值域為 [1,3]

而圖形每隔 2π 單位的區間會不斷重複 所以定義域為任意實數,週期為 2π

- (1) 試完成下列表格,並以描點方式繪出 $y = \sin\left(x \frac{\pi}{4}\right) \frac{1}{2}$ 的圖形。
- (2) 承(1),試求函數的定義域、值域、週期、振幅。

1016	/	
1223	(
	1	•





在坐標圖形上標出上列的點,並用曲線將其連接, 再左右兩側重複圖形,如上圖

(2) 因為最高點的y坐標為 $\frac{1}{2}$,最低點的y坐標為 $-\frac{3}{2}$

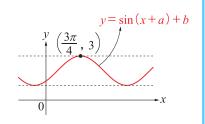
所以振幅為
$$\frac{1}{2} \left(\frac{1}{2} - \left(-\frac{3}{2} \right) \right) = 1$$
,值域為 $\left[-\frac{3}{2}, \frac{1}{2} \right]$

而圖形每隔 2π 單位的區間會不斷重複 所以定義域為任意實數,週期為 2π

例題 🗖

由圖形觀察平移的量

右圖為 $y=\sin(x+a)+b$ 的部分圖形,其中 $0 < a < 2\pi$, 試求 a, b 的值。



解 因為最高點的 y 坐標為 3

所以
$$1+b=3$$
 ,得 $b=2$

又圖形通過
$$\left(\frac{3\pi}{4},3\right)$$

所以
$$3 = \sin\left(\frac{3\pi}{4} + a\right) + 2 \Rightarrow \sin\left(\frac{3\pi}{4} + a\right) = 1$$

又
$$0 < a < 2\pi$$
,所以 $\frac{3\pi}{4} < \frac{3\pi}{4} + a < \frac{11\pi}{4}$

因此
$$\frac{3\pi}{4} + a = \frac{\pi}{2} + 2\pi$$
 ,得 $a = \frac{7\pi}{4}$

將 y=sinx 水平向右平移 3 單位,再鉛直向上平移 4 單位,所得的圖形為 $y = \sin(x+a) + b$,其中 a 值介於 $-\pi$ 到 π 之間。試求 a 與 b 的值。

M 將 $v=\sin x$ 水平向右平移 3 單位,再鉛直向上平移 4 單位, 所得的圖形為 $y = \sin(x-3) + 4$,

故 a = -3, b = 4

類題

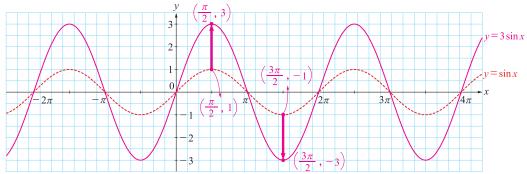
例題

正弦函數的伸縮(-)

配合課本例題 7

- (1) 試利用 $y=\sin x$ 描繪出 $y=3\sin x$ 的圖形,並回答其週期、振幅、值域。
- (2) 承(1),試利用 $y=3\sin x$ 描繪出 $y=3\sin x+1$ 的圖形,並回答其週期、振幅、值域。

解 (1)



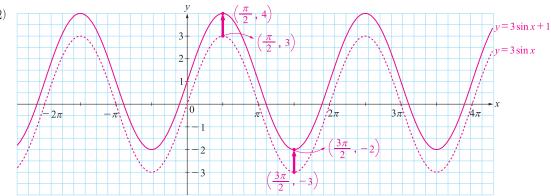
將 $y = \sin x$ 的每一個點的y坐標皆乘上3倍(可利用軸上角的點做觀察)

可得到 $y=3 \sin x$ 的圖形

因為最大值為3,最小值為-3,

=3,值域為 [-3,3],而週期為 2π

(2)



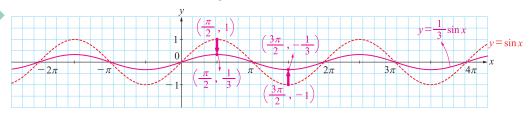
將 $y=3\sin x$ 的每一個點往上平移1單位(可利用軸上角的點做觀察)

可得 $y=3 \sin x+1$ 的圖形

因為最大值為4,最小值為-2,

所以振幅為 $\frac{4-(-2)}{2}$ =3,值域為 [-2,4],而週期為 2π

試利用 $y = \sin x$ 的圖形描繪出 $y = \frac{1}{3} \sin x$ 的圖形, 並回答其週期與振幅為何?



將 $y = \sin x$ 的每一個點的y坐標皆乘上 $\frac{1}{3}$ 倍(可利用軸上角的點做觀察)

可得 $y=\frac{1}{3}\sin x$ 的圖形,因為最大值為 $\frac{1}{3}$,最小值為 $-\frac{1}{3}$,所以振幅為 $\frac{1}{3}$,週期不變,仍為 2π

例題 📮

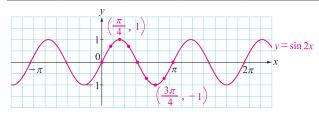
正弦函數的伸縮□

配合課本例題 8

- (1) 試完成下列表格,並描繪出函數 $f(x) = \sin 2x$ 的圖形。(已知 $\sqrt{2} \approx 1.414$)
- (2) 承(1),函數 f(x)的圖形可以由 $y=\sin x$ 的圖如何調整而得?
- (3) 承(1),函數f(x)的週期與振幅為何?

(1)

)	2 <i>x</i>	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
	x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$	$\frac{5\pi}{8}$	$\frac{3\pi}{4}$	$\frac{7\pi}{8}$	π
	$\sin 2x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0



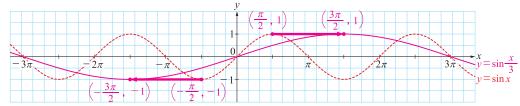
以表格的資料,在坐標上標出點 $(x,\sin 2x)$,並用曲線將其連接,再左右兩側重複圖形,如上圖

- (2) 函數 f(x) 的圖形恰為 $y=\sin x$ 的圖形「以y 軸為中心沿水平方向壓縮為 $\frac{1}{2}$ 倍」而得也就是將 $y=\sin x$ 圖形上每一點的 x 坐標都乘上 $\frac{1}{2}$ 倍而得
- (3) f(x)的週期為 π ,振幅不變,仍為1

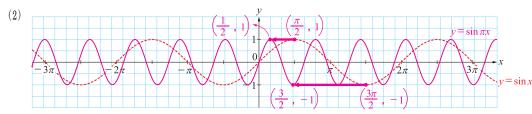
試利用 $y=\sin x$ 的圖形描繪出各函數的圖形,並回答其週期:

$$(1) y = \sin \frac{x}{3} \circ$$

(2)
$$y = \sin \pi x$$



將 $y=\sin x$ 的每一個點的 x 坐標皆乘上 3 倍,可得到 $y=\sin\frac{x}{3}$ 的圖形 即把 $y=\sin x$ 的圖形「以y軸為中心沿水平方向伸長為 3 倍」而得 $\Rightarrow y = \sin \frac{x}{3}$ 的週期為 $2\pi \times 3 = 6\pi$



將 $y = \sin x$ 的每一個點的 x 坐標皆乘上 $\frac{1}{\pi}$ 倍,可得到 $y = \sin \pi x$ 的圖形

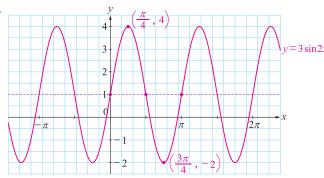
即把 $y=\sin x$ 的圖形「以y 軸為中心沿水平方向壓縮為 $\frac{1}{\pi}$ 倍」而得

$$\Rightarrow y = \sin \pi x$$
 的週期為 $2\pi \times \frac{1}{\pi} = 2$

例題 🖢

正弦函數圖形的伸縮與平移

試繪出 $y=3 \sin 2x+1$ 的圖形,並回答其週期與振幅。



Note

繪製正弦函數圖形,應畫 2~3個完整的週期,並標示 出一組波峰與波谷的坐標。

當
$$2x$$
 等於 0 , $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π 時 , 對應的點 $(x$, $3\sin 2x + 1)$

分別為
$$(0,1)$$
, $\left(\frac{\pi}{4},4\right)$, $\left(\frac{\pi}{2},1\right)$, $\left(\frac{3\pi}{4},-2\right)$, $(\pi,1)$,

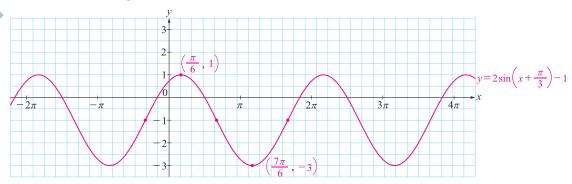
在坐標圖形上標出上列各點,並用曲線將其連接,

再左右兩側重複圖形,如上圖

$$\Rightarrow$$
 y=3 sin 2x+1 的振幅為 $\frac{4-(-2)}{2}$ =3,週期為 2× $\left(\frac{3\pi}{4}-\frac{\pi}{4}\right)$ = π

類題

試畫出 $y=2\sin\left(x+\frac{\pi}{3}\right)-1$ 的圖形,並回答其週期與振幅。



當
$$x + \frac{\pi}{3}$$
 等於 0 , $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π 時 ,對應的點 $\left(x$, $2\sin\left(x + \frac{\pi}{3}\right) - 1\right)$

分別為
$$\left(-\frac{\pi}{3}, -1\right), \left(\frac{\pi}{6}, 1\right), \left(\frac{2\pi}{3}, -1\right), \left(\frac{7\pi}{6}, -3\right), \left(\frac{5\pi}{3}, -1\right),$$

在坐標圖形上標出上列各點,並用曲線將其連接,

再左右兩側重複圖形,如上圖

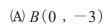
⇒ 因為最高點的y坐標為1,最低點的y坐標為-3,

所以振幅為
$$\frac{1-(-3)}{2}$$
=2,週期為 $2\times\left(\frac{7\pi}{6}-\frac{\pi}{6}\right)$ = 2π

由圖形觀察函數的變化方式

配合課本習題 6

右圖為三角函數 $y=3\sin(ax-b)$ 的部分圖形,其中 a>0,則 下列各項敘述何者正確?



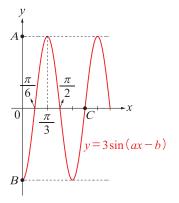
(B)
$$b = \frac{\pi}{6}$$

(C)
$$C\left(\frac{5\pi}{6}, 0\right)$$

(D)
$$y$$
 的週期為 $\frac{2\pi}{3}$

(E)其圖形可由
$$y=3 \sin 3x$$
 向右平移 $\frac{\pi}{6}$ 而得

〔建國中學〕



 $oxtleft{\mathbb{B}}$ (A) \bigcirc :因為波谷的y坐標為-3,所以 $oldsymbol{B}$ 點坐標為(0,-3)

(B) \times (C) \bigcirc (D) \bigcirc :

由題圖可知週期為 $2 \times \left(\frac{\pi}{2} - \frac{\pi}{6}\right) = \frac{2\pi}{3} \Rightarrow C$ 點坐標為 $\left(\frac{\pi}{6} + \frac{2\pi}{3}, 0\right)$,即 $\left(\frac{5\pi}{6}, 0\right)$

又由伸縮性質知週期為 $\frac{2\pi}{a}$ $\Rightarrow a=3$

將
$$\left(\frac{\pi}{3}, 3\right)$$
代入 $y=3\sin(3x-b)$ 得 $3=3\sin(\pi-b)$ $\Rightarrow \sin(\pi-b)=1$

因此
$$\pi-b=\frac{\pi}{2}+2k\pi$$
, $k\in\mathbb{Z}\Rightarrow b=\frac{\pi}{2}-2k\pi$, $k\in\mathbb{Z}$

(E)
$$\bigcirc: y=3 \sin 3x$$
 向右平移 $\frac{\pi}{6}$ 得 $y=3 \sin \left(3\left(x-\frac{\pi}{6}\right)\right)=3 \sin \left(3x-\frac{\pi}{2}\right)$

故選(A)(C)(D)(E)

類題

設a,b,c>0, 若 $y=a\sin bx+c$ 的圖形如右, 試求 a \ b \ c 的值。

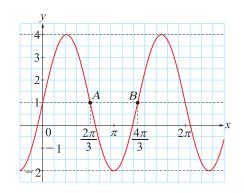
f 因為 $y=a\sin bx+c$ 的最高點的 y 坐標為 4,

最低點的y坐標為-2

所以
$$a = \frac{4 - (-2)}{2} = 3$$
, $c = \frac{4 + (-2)}{2} = 1$

又觀察圖形週期為 $2 \times \left(\frac{4\pi}{3} - \frac{2\pi}{3}\right) = \frac{2\pi}{h}$,

解得 $b = \frac{3}{2}$



主題四 正弦波

(配合課本 P.38~P.40) -

1. 在數學上,將正弦函數做任意的平移與伸縮,所得的函數 $B+A\sin(\omega x+\phi)$ 稱為正弦波,這是用來研究與模擬週期現象的數學模型。

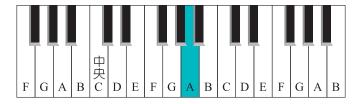
 $\mathbf{II}: B$ 稱為基線,A稱為振幅, $T=\frac{2\pi}{\alpha}$ 稱為週期, ϕ 稱為相位角。

- **2.** 聲音是正弦波的一種,是由空氣振動形成聲波而得,常表示為 $A\sin(2\pi fx)$,其中物理學上定義,**頻率** f 為週期 T 的倒數 $\left(\Pr f = \frac{1}{T}\right)$,單位為赫茲 $\operatorname{Hz}(次 / 秒)$ 。
- **3.** 頻率 f 表現為**音高**,振幅 A 表現為聽覺上的**音量**;空氣振動愈快(頻率愈高),音高就愈高。
- **4.** 在音樂理論上,規定 A4(音樂課唱的 la)的音高稱為標準音高。這個純音的聲波函數是 $f(x) = \sin(880\pi x)$,其中 x 的單位為秒。
- 5. 可利用電腦軟體 GeoGebra 發出純音的聲音,例如輸入 「playsound $(\sin(880\pi x), 0, 2)$ 」就會發出 A4 音 2 秒鐘。

例題 1 聲 波

配合課本例題 10

在音樂理論上,規定 A4(音樂課唱的 la)的音高稱為標準音高,其聲波函數是 $f(x) = \sin(880\pi x)$,其中 x 的單位為秒。試回答下列問題:



- (1) 此函數的週期為何?
- (2) 此函數的頻率為何?
- (3) 設由 A4 往下 5 個半音 E4 (即音樂課唱的 mi) 的聲波頻率為 A4 的 $\frac{3}{4}$ 倍,則 E4 這個音的聲波函數為何?

素養題

- (2) 因為頻率為週期的倒數,故頻率為 440 赫茲 即標準音高是空氣每秒振動 440 次
- (3) 因為 E4 的頻率為 $440 \times \frac{3}{4} = 330$ 赫茲 所以 E4 的聲波函數是 $f(x) = \sin(2\pi \times 330 \times x) = \sin(660\pi x)$

Note

純音的聲波函數為 $\sin(2\pi fx)$, 其中 f 為頻率。

有四個聲音的聲波函數:

 $f_1(x) = 3 \sin(20\pi x)$, $f_2(x) = 50 \sin(40\pi x)$, $f_3(x) = \sin(200\pi x)$, $f_4(x) = 10 \sin(3000\pi x)$, 試回答下列問題:

- (1) 若某一臺鋼琴能發出的聲波頻率是 30Hz 到 3000Hz,則下列哪些是此鋼琴能發出的 聲波?(多選)
 - $(A) f_1$
- (B) f_2
- (C) f_3
- (D) f_4
- (E) 以上皆非

- (2) 音量最大的聲音是哪一個?
- \mathbf{m} (1) 設此鋼琴能發出的聲波函數為 $y = \sin kx$

若聲波頻率是 30Hz 到 3000Hz, 則週期是 $\frac{1}{30}$ 到 $\frac{1}{3000}$

由正弦函數圖形的伸縮可知 $\frac{1}{3000} \leq \frac{2\pi}{k} \leq \frac{1}{30}$,

化簡得 $60\pi \le k \le 6000\pi$, 故選(C)(D)

(2) 因為振幅愈大,音量愈大 所以音量最大的是 £2

三角函數圖形解方程式

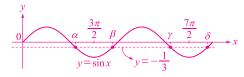
配合課本習題 9

- (1) 在 $0 \le x \le 4\pi$ 範圍內,方程式 $\sin x = -\frac{1}{2}$ 這些解的總和為何?
- [平鎮高中]

- (2) 方程式 12 sin x=x 有 個實數解。

[建國中學]

(1) 在坐標平面上作 $y = \sin x$ 與 $y = -\frac{1}{3}$ 的圖



兩圖形相交於 4 點,令其 x 坐標由小至大依序為 α , β , γ , δ

$$\Rightarrow \frac{\alpha + \beta}{2} = \frac{3\pi}{2} \cdot \frac{\gamma + \delta}{2} = \frac{7\pi}{2}$$

故這些解的總和為 $\alpha + \beta + \gamma + \delta = 3\pi + 7\pi = 10\pi$

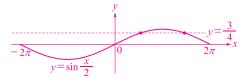
(2) 在坐標平面上作 $y = \sin x$ 與 $y = \frac{x}{12}$ 的圖

$$-4\pi \qquad -2\pi \qquad 0 \qquad 1 \qquad y = \frac{x}{12} \qquad (12, 1)$$

$$(-12, -1) \qquad y = \sin x + 1 \qquad 2\pi \qquad 4\pi$$

兩圖形有7個交點,故方程式12 sinx=x 有7個實數解

- (1) 設 $-2\pi \le x \le 2\pi$, 則 $4 \sin \frac{x}{2} = 3$ 有幾個實數解?
- (2) 方程式 $\sin 4x \frac{x}{3} = 0$ 有幾個實數解?
- \mathbb{R} (1) 在坐標平面上作 $y = \sin \frac{x}{2}$ 與 $y = \frac{3}{4}$ 的圖



兩圖形在 $-2\pi \le x \le 2\pi$ 中恰有 2 個交點

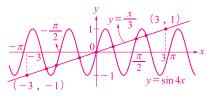
故 $4 \sin \frac{x}{2} = 3 在 - 2\pi \le x \le 2\pi$ 恰有 2 個實數解

(2) 在坐標平面上作 $y = \sin 4x$ 與 $y = \frac{x}{3}$ 的圖

曲於
$$y = \frac{x}{3} = \pm 1$$
 時, $x = \pm 3$

且 $y=\sin 4x$ 的週期為 $\frac{2\pi}{4}$

所以 $(-\pi,\pi)$ 可畫 4 個週期的圖形



兩圖形有7個交點

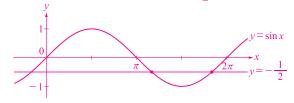
故方程式 $\sin 4x - \frac{x}{3} = 0$ 有 7 個實數解

例題 1 三角函數圖形解不等式

配合課本習題 9

- (1) 設 $0 \le x \le 2\pi$,若 $\sin x \ge -\frac{1}{2}$,則 x 的範圍為何?
- (2) 在 $0 \le x \le 4\pi$ 範圍內,不等式 $(\cos x + 5)$ $(2\sin x + \sqrt{2}) < 0$ 的解為何?

(1) 在坐標平面上作 $y = \sin x$ 與 $y = -\frac{1}{2}$ 的圖



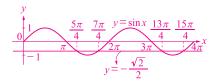
在 $0 \le x \le 2\pi$ 時,兩圖形有兩個交點,分別為 $\left(\frac{7\pi}{6}, -\frac{1}{2}\right), \left(\frac{11\pi}{6}, -\frac{1}{2}\right)$

滿足不等式 $\sin x \ge -\frac{1}{2}$ 的解,即滿足 $y = \sin x$ 在 $y = -\frac{1}{2}$ 上方的區域

故不等式 $\sin x \ge -\frac{1}{2}$ 的解為 $0 \le x \le \frac{7\pi}{6}$ 或 $\frac{11\pi}{6} \le x \le 2\pi$

(2) 由於 $-1 \le \cos x \le 1$,所以 $\cos x + 5$ 恆正 故不等式只需考慮 $2\sin x + \sqrt{2} < 0$ 的解

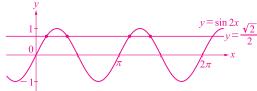
在坐標平面上作 $y = \sin x$ 與 $y = -\frac{\sqrt{2}}{2}$ 的圖



故不等式 $(\cos x + 5)(2\sin x + \sqrt{2}) < 0$ 的解為 $\frac{5\pi}{4} < x < \frac{7\pi}{4}$ 或 $\frac{13\pi}{4} < x < \frac{15\pi}{4}$

- (1) 設 $0 \le x \le 2\pi$,若 $\sin 2x \ge \frac{\sqrt{2}}{2}$,則 x 的範圍為何?
- (2) 設 $-2\pi \le x \le 2\pi$,若 $4 \sin \frac{x}{2} > 3$ 的解為 a < x < b,則 a + b =_____。
- 解 (1) 先考慮 $\sin 2x = \frac{\sqrt{2}}{2}$,再藉由函數圖形觀察不等式 $\sin 2x \ge \frac{\sqrt{2}}{2}$ 的解 因為 $0 \le 2x \le 4\pi$,所以 $\sin 2x = \frac{\sqrt{2}}{2}$ 的解為 $2x = \frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{9\pi}{4}$, $\frac{11\pi}{4}$ 解得 $x = \frac{\pi}{8}$, $\frac{3\pi}{8}$, $\frac{9\pi}{8}$, $\frac{11\pi}{8}$

在坐標平面上作 $y=\sin 2x$ 與 $y=\frac{\sqrt{2}}{2}$ 的圖



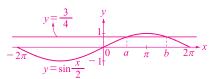
在 $0 \le x \le 2\pi$ 時,兩圖形有四個交點,分別為

$$\left(\frac{\pi}{8}, \frac{\sqrt{2}}{2}\right), \left(\frac{3\pi}{8}, \frac{\sqrt{2}}{2}\right), \left(\frac{9\pi}{8}, \frac{\sqrt{2}}{2}\right), \left(\frac{11\pi}{8}, \frac{\sqrt{2}}{2}\right),$$

滿足不等式 $\sin 2x \ge \frac{\sqrt{2}}{2}$ 的解,即滿足 $y = \sin 2x$ 在 $y = \frac{\sqrt{2}}{2}$ 上方的區域

故不等式
$$\sin 2x \ge \frac{\sqrt{2}}{2}$$
 的解為 $\frac{\pi}{8} \le x \le \frac{3\pi}{8}$ 或 $\frac{9\pi}{8} \le x \le \frac{11\pi}{8}$

(2) 在坐標平面上作 $y = \sin \frac{x}{2}$ 與 $y = \frac{3}{4}$ 的圖



兩圖形在 $-2\pi \le x \le 2\pi$ 的 2 個交點在 x=a,b 處 因為圖形在 $0 \le x \le 2\pi$ 對稱於 $x=\pi$

故
$$a+b=2\pi$$

例題 14

曲線擬合

當我們知道某件事物應具有週期性時,因此以具有週期性的正弦函數模型來擬合已知 數據,藉此估計。若有一筆觀測資料如下:

λ	r	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
3	,	0.60	0.41	0.42	0.24	0.10	0.02	0	0.08	0.23	0.43	0.66	0.85	0.97	1	0.92	0.77

今希望利用正弦函數 $y=a\sin(bx-h)+k(其中b>0)$ 來描述這筆資料,並希望最高點 (26,1)與最低點(12,0)皆落在圖形上。請問:

- (1) 正弦函數 $y=a\sin(bx-h)+k$ 的 a=______。

[丹鳳高中]

解(1) 因為−1≤sin θ≤1

所以y的最大值為 $a \times 1 + k = 1$,最小值為 $a \times (-1) + k = 0$

可得
$$a = \frac{1}{2}$$
 , $k = \frac{1}{2}$

$$x=12$$
 到 $x=26$ 是 $\frac{1}{2}$ 個週期

所以週期為
$$\frac{26-12}{\frac{1}{2}} = 28 = \frac{2\pi}{b}$$
,故 $b = \frac{\pi}{14}$

(2)
$$(12, 0)$$
 $\Leftrightarrow y = \frac{1}{2} \sin\left(\frac{\pi}{14}x - h\right) + \frac{1}{2} \Rightarrow 0 = \frac{1}{2} \sin\left(\frac{6\pi}{7} - h\right) + \frac{1}{2}$

$$\Rightarrow \sin\left(\frac{6\pi}{7} - h\right) = -1$$

$$\Rightarrow \frac{6\pi}{7} - h = -\frac{\pi}{2} + 2m\pi$$
, $m \in \mathbb{Z}$

$$\Rightarrow h = \frac{19\pi}{14} - 2m\pi , m \in \mathbb{Z}$$

$$\therefore 0 < h < 2\pi$$
 $\therefore m = 0$, $\exists h = \frac{19\pi}{14}$

故數對
$$(h, k) = \left(\frac{19\pi}{14}, \frac{1}{2}\right)$$

已知某海濱浴場海浪的高度 y(單位:公尺)是時間 $t(0 \le t \le 24$,單位:時)的函數,記作 y=f(t),下表是某日各時的浪高數據:

t	0	3	6	9	12	15	18	21	24
У	1.5	1.0	0.5	1.0	1.5	1.0	0.5	0.99	1.5

經長期觀測,y=f(t)的曲線可近似地看成是函數 $y=A\sin\left(\omega t+\frac{\pi}{2}\right)+b$ 。依據規定,

當海浪高度不低於 1.25 公尺時才對衝浪愛好者開放,判斷一天內有_____小時的時間可供衝浪者進行運動。 [高雄中學]

$$\mathbb{R}$$
 0.5 \le y \le 1.5

$$0.5 \le A \sin\left(\omega t + \frac{\pi}{2}\right) + b \le 1.5$$

因為
$$-1 \le \sin\left(\omega t + \frac{\pi}{2}\right) \le 1$$

所以
$$\begin{cases} \frac{0.5-b}{A} = -1\\ \frac{1.5-b}{A} = 1 \end{cases} \Rightarrow \begin{cases} A = \frac{1}{2}\\ b = 1 \end{cases}$$

週期為
$$12-0=\frac{2\pi}{\omega}$$
 $\Rightarrow \omega = \frac{\pi}{6}$

在坐標平面上作 $y = \frac{1}{2} \sin \left(\frac{\pi}{6} t + \frac{\pi}{2} \right) + 1$ 與 y = 1.25 的略圖

$$y = \frac{1}{2}\sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) + 1$$

$$y = 1.25$$

$$0 \quad 2 \quad 6 \quad 10 \quad 12 \quad 14 \quad 18 \quad 22 \quad 24 \quad t$$

$$\frac{1}{2}\sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) + 1 = 1.25 \Rightarrow \sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) = 0.5$$

$$\Rightarrow \frac{\pi}{6} t + \frac{\pi}{2} = \frac{5\pi}{6}, \frac{\pi}{6} + 2\pi, \frac{5\pi}{6} + 2\pi, \frac{\pi}{6} + 4\pi \Rightarrow t = 2, 10, 14, 22$$

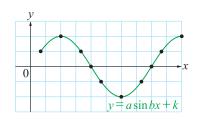
得知
$$\frac{1}{2}\sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) + 1 \ge 1.25$$
 的解為 $0 \le t \le 2$, $10 \le t \le 14$, $22 \le t \le 24$

故一天內有8小時的時間可供衝浪者進行運動

例題 15

正弦函數的應用(-)

一項美國 加州 柏克萊大學的計畫:SETI 是「Search for Extra Terrestrial Intelligence」 的縮寫,也就是搜尋地外文明的計畫。這是利用全世界參加者的電腦來參與處理來自 外太空的訊息,來進行資料分析。假設某一天收到非自然產生的電波訊號,經過分析 後,可轉譯得到一串數字訊息。其中某段訊息如下:0.67,1,2,2,3.33,1,4,0, $4.67 \cdot -1 \cdot 6 \cdot -2 \cdot 7.33 \cdot -1 \cdot 8 \cdot 0 \cdot 8.67 \cdot 1 \cdot 10 \cdot 2 \cdot \cdots \circ$



若賈聰明將前後兩個數字視為一個點坐標,例如:(0.67,1),(2,2),(3.33,1), ……,將這些點描繪至方格紙中並將這些點連接成右上方的圖形(圖形的格線距離是1 單位)。賈聰明猜測這些點是正弦函數 $y=a \sin bx+k$ 圖形上的點,且 a>0,b>0,k為常數。

- (1) 試求此正弦函數 $y=a \sin bx+k$ 的週期=?振幅=?b=?
- (2) 若依賈聰明的結果,即這些點是正弦函數 $y=a\sin bx+k$ 圖形上的點。當接收到一 個無線電波轉譯成數字為 81,則下一個無線電波轉譯的數字為何?(四捨五入至小 數點後第二位) [明倫高中]

- (1) 兩相鄰的波峰、波谷坐標分別為(2,2)、(6,-2)因此,週期為 $2\times(6-2)=8$,振幅為 $\frac{1}{2}[2-(-2)]=2$ 由伸縮變化知週期為 $\frac{1}{h} \times 2\pi = 8$,所以 $b = \frac{\pi}{4}$
 - (2) 因為 $a = \frac{2}{1} = 2$, $k = \frac{1}{2}(2 + (-2)) = 0$ 所以將 x=81 代入得 $y=2\sin\left(\frac{\pi}{4}\times81\right)=2\sin\frac{\pi}{4}=\sqrt{2}\approx1.41$ 故下一個無線電波轉譯的數字為 1.41

某高中天文社成員欲觀測月球亮面的比例,從某日開始每隔兩個夜晚在同一時間拍攝 月球照片,並計算月球亮面比例,他們的觀測資料如下表所示:

開始觀 察後的 x 日	0日	2日	4日	6日	8日	10 日	12 日	14 日	16 日	18日	20 日	22 日	24 日	26 日	28 日	30 日
月球亮面比例(%)	42	24	10	2	0	8	23	43	66	85	97	100	92	97	60	41

假設用正弦函數 $y=a \sin[b(x-h)]+k(其中 a,b$ 為正數,0 < h < 30) 來描述這筆觀測 資料,且滿足下面兩條件:

- ① 資料點(22,1)和(8,0)落在圖形上。
- ② 資料點(22,1)和(8,0)依次為圖形相鄰的最高點與最低點。

則:

(1) 此圖形的週期為下列何者?(單選)

(A) 14

- (B) 28
- (C) 16
- (D) 32
- (E) 30

(2) 求序組(a, b, h, k) = ?

[興大附中] 《素養題

- \mathbf{m} (1) 週期為 $2 \times (22-8) = 28$,故撰(B)
 - (2) 週期為 $\frac{1}{b} \times 2\pi = 28 \Rightarrow b = \frac{\pi}{14}$

振幅為
$$a = \frac{1}{2}(1-0) = \frac{1}{2}$$
,基準為 $k = \frac{1}{2}(1+0) = \frac{1}{2}$

將(22,1)代入得
$$1=\frac{1}{2}\sin\frac{\pi}{14}(22-h)+\frac{1}{2}\Rightarrow\sin\frac{\pi}{14}(22-h)=1$$

所以
$$\frac{\pi}{14}(22-h)=\frac{\pi}{2}$$
,解得 $h=15$

故序組
$$(a,b,h,k) = \left(\frac{1}{2},\frac{\pi}{14},15,\frac{1}{2}\right)$$

例題 15

正弦函數的應用口

某動物園貓熊館打造一個圓形摩天輪,當摩天輪開始運轉時,在摩天輪的圓仔恰坐在 離地最近的位置上,x分鐘後,圓仔離地的高度y(單位:公尺)可表為

$$y=5\sin\left(\frac{2\pi}{25}x-\frac{\pi}{2}\right)+6$$
,試問:

- (1) 摩天輪轉一圈需_____分鐘。
- (2) 圓仔離地最高的高度為_____公尺。

- (1) 轉一圈的時間週期為 $\frac{2\pi}{2\pi}$ = 25(分鐘)
 - (2) 由於 $\sin\left(\frac{2\pi}{25}x \frac{\pi}{2}\right) \le 1$

所以圓仔離地最高的高度為 γ 的最大值,即為 $5\times1+6=11(公尺)$

類題

已知電流強度 I (單位:安培) 與時間 t (單位:秒) 的關係可表為 $I=10\sin\left(100\pi t + \frac{\pi}{6}\right)$ 。

當
$$t=\frac{1}{40}$$
 秒時,電流強度 I 為______安培。

[新北高中]

$$m$$
 當 $t=\frac{1}{40}$ 秒時,代入得

$$I = 10 \sin \left(100\pi \times \frac{1}{40} + \frac{\pi}{6} \right) = 10 \sin \left(\frac{5\pi}{2} + \frac{\pi}{6} \right) = 10 \sin \frac{8\pi}{3}$$
$$= 10 \sin \frac{2\pi}{3} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} \ (\cancel{\Xi}^{\frac{12}{12}})$$