自然科學六上單元四活動 2 教案

			日然符字八上半九四四	ا راسل				
- -	領域/科目		自然科學		設計者	王馨瑩		
<u>.</u>	實施年級		六上	考		40分鐘		
單元名稱			奇妙的電磁世界					
活動名稱神奇的電磁			神奇的電磁鐵					
	學習表現	ро-Ш	-2 能初步辨別適合科學探究的問題,並能依	據	●A1身	心素質與自我精進		
		觀察	見察、蒐集資料、閱讀、思考討論等,提出適宜探究 現察、 東			自-E-A1 能運用五官·敏銳		
		之問是	之問題。			的觀察周遭環境・保持好		
		ра-Ш	pa-Ⅲ-2 能從(所得的)資訊或數據·形成解釋、發			、想像力持續探索自		
		現新知	見新知、獲知因果關係、解決問題或是發現新的問題。					
		ai-Ⅲ-	i-Ⅲ-1 透過科學探索了解現象發生的原因或機制,			統思考與解決問題		
學		滿足如	苏 足好奇心。			-A2 能運用好奇心及		
習重		ai-Ⅲ-	2 透過成功的科學探索經驗,感受自然科學學	學 :	為阿	能力,從觀察、閱讀、		
黑占		習的經	終趣。	7	之 核 思考 心	听得的資訊或數據		
	學習內容	INe-I	Ⅱ-10 改變電流方向或大小,可以調控電磁鐵區	的	素	提出適合科學探究的		
		磁極方	磁極方向或磁力大小。			或解釋資料・並能依		
		INf-Ⅲ-1世界與本地不同性別科學家的事蹟與貢獻			據已	知的科學知識、科學		
					概念	及探索科學的方法去		
					想像	可能發生的事情,以		
					及理	解科學事實會有不同		

	的論黑	站、證據	或解釋方式。		
單元融 入議題 與其實 質內涵	●人權教育 人 E5 欣賞、包容個別差異並尊重自己與他人的權利。				
單元與其					
科目的連	無				
結					
教材來源	●南一版自然科學六上單元四活動2				
教學設備	學設備 ●南一電子書、播放設備、教學影片。				
/資源	●實驗器材:漆包線、砂紙、指北針、電池座、電池、電線。				
	學習目標				
1.能透過實	聚 ,了解通電的線圈會有磁性。				
	教學活動設計				
教學活動內容及實施方式			評量方式		
【2-1】通電產生磁力					
<u>▶觀察</u>			●專心聆聽		
►介紹奧斯特發現電流磁效應的故事及其影響。 ●態度檢核					
1.教師引導學生閱讀奧斯特的事蹟:指北針的指針會受到磁鐵和地磁的影響					
而產	主偏轉。西元1820年丹麥物理學家奧斯特(HansChristianOrsted,				

西元1777年—西元1851年)發現通電的電線會使一旁的磁針產生偏轉,		
他認為通電的電線具有磁力。		
<u>▶實驗</u>	8	●專心聆聽
▶電流平行或垂直於指北針指針的影響。		●態度檢核
2.讓我們模仿奧斯特的實驗,觀察通電前後指北針指針的偏轉方向有什麼		●實作表現
變化?		
(1)先將指北針平放,使指針的指南端、指北端分別與底盤的南、北對齊。		
(2)將指北針位置固定,電線在指北針上方平行指針擺放後,再放入電池。		
(3)將指北針位置固定,電線在指北針上方垂直指針擺放後,再放入電池。		
<u>▶討論</u>	2	●態度檢核
▶根據實驗結果進行討論。		●參與討論
.什麼原因造成指北針的指針偏轉?		●□頭發表
→通電後的電線產生磁性·使指北針的指針偏轉。		
<u>▶結論</u>	2	●專心聆聽
▶根據實驗結果和討論,獲得完整的結論。		●態度檢核
3.電流平行於指北針指針會使指針偏轉。將電線垂直指針置放於指北針的		●□頭發表
上方與下方時,可能使指針不偏轉。		
<u>▶實驗</u>	8	●專心聆聽
▶改變電流方向對指北針指針的影響實驗。		●態度檢核
4.如果改變電流方向,會影響指針的偏轉方向嗎?讓我們來試試看。		●實作表現
(1)先將指北針平放,使指針的指南端、指北端分別與底盤的南、北對齊。		
▶改變電流方向對指北針指針的影響實驗。4.如果改變電流方向,會影響指針的偏轉方向嗎?讓我們來試試看。	8	●態度檢核

(2)指北針位置固定,電線在指北針上方平行指針擺放(將電池正極接出		
的紅色電線連接到指針的指南端)後,再放入電池。		
(3)指北針位置固定,電線在指北針上方垂直平行指針擺放(將電池正極		
接出的紅色電線連接到指針的指北端)後,再放入電池。		
<u>▶討論</u>	2	●態度檢核
▶根據實驗結果進行討論。 		●參與討論
.什麼原因造成指北針偏轉的方向改變?		●□頭發表
→指針偏轉是因為受到通電的電線附近的磁場所致,當電池反接,電線 		
的磁場已經改變,因此指針偏轉方向相反。		
<u>▶結論</u>	2	●專心聆聽
▶根據實驗結果和討論,獲得完整的結論。		●態度檢核
5.當電流平行於指北針,電流方向相反時,指北針的指針偏轉方向也會相		
反。		
<u>▶實驗</u>	8	●專心聆聽
▶改變電線位置後對指北針指針的影響實驗。		●態度檢核
6.如果電流的方向固定,改變電線的擺放位置後,指針的偏轉方向也會改		●實作表現
變嗎?讓我們來試試看。		
(1)先將指北針平放,使指針的指南端、指北端分別與底盤的南、北對齊。		
(2)指北針位置固定,電線在指北針上方平行指針擺放後,再放入電池。		
(3)指北針位置固定,電線在指北針下方平行指針擺放後,再放入電池。		
<u>▶討論</u>	2	●態度檢核
L	<u>I</u>	<u> </u>

▶根據實驗結果進行討論。		●參與討論
.指北針偏轉的方向,受到什麼因素影響?		●□頭發表
→電線的擺放位置不同時,電線的磁場已經改變,因此指針偏轉方向會		
相反。		
<u>▶結論</u>	2	●專心聆聽
▶根據實驗結果和討論,獲得完整的結論。		●態度檢核
7.電線通電後產生磁力和N、S極,造成指北針偏轉。電線擺放位置不同,		●□頭發表
會影響指北針的偏轉。		
<u>▶歸納</u>	2	●專心聆聽
1.通電的電線附近會產生磁場,使得指北針的指針產生偏轉。		●態度檢核
2.改變電池的擺放方向,指針偏轉的方向會不同,表示改變電流方向可以		
改變磁場的方向。		
3.改變電線放於指北針的上方或下方,指針偏轉的方向會不同,表示改變		
電線的位置,可以改變磁場的方向。		