VR 教材教學反思(「力矩」單元)

一、教學亮點

1. 增強學習臨場感與空間理解

學生透過 VR 虛擬場景,如「互動式槓桿模擬器」或「工廠中使用工具的實境體驗」,能身歷其境觀察力作用點、支點與力臂,對於理解「力矩=力×力臂」有更直觀且深刻的認識。

2. 提升學生學習動機與專注度

相較傳統課堂, VR 教學提供高互動與沉浸感, 特別能吸引平時較難專注的學生投入其中, 觀課時明顯感受學生參與度與興趣提升。

3. 促進主動探索與個別化學習

學生可根據個人理解進度在虛擬空間中反覆操作、觀察、調整, 培養主動建構知識的能力, 也有助於照顧學習落差。

二、面臨的挑戰與問題

1. 部分學生操作熟練度不足

對第一次接觸 VR 設備的學生來說, 初期操作如定位、視角調整等需要花費時間適應, 可能分數學習焦點, 導致認知負擔增加。

2. 課程時間掌握困難

VR 活動時間容易拉長,學生在探索過程中沈浸其中,教師需特別注意時間分配,避免後續講解與反思時間不足。

3. 科技設備資源限制

每位學生無法同時操作時需採輪流使用,易出現「等待」或「旁觀」的空檔,影響整體學 習流暢度。部分裝置也有網路或畫面延遲等問題。

三、學生學習表現觀察

指標	評價(◎佳/○普通/△待 加強)	說明
學習動機與投入程度	0	學生對 VR 操作興趣高,積極詢問與討論
概念理解與應用能力	0	對槓桿作用點與力距理解較 佳,但仍需文字與圖示輔助 鞏固

合作與討論表現	©	學生輪流使用時會主動說明 操作與發現,展現良好同儕 互動
技術操作能力	Δ	約 1/3 學生需教師或助教 協助完成初始操作

四、教學調整與建議

1. 加入「操作前導活動」或模擬影片說明

在 VR 體驗前進行「操作示範」或使用短片說明任務目標與注意事項,有助於降低學生操作焦慮與時間浪費。

2. 結合實體學習單或即時紀錄

為每位學生設計學習單, 搭配 VR 觀察紀錄欄與反思問題, 幫助學生將所見轉化為文字與圖像表達, 深化學習成果。

3. 分組合作並明確分工

對無法一人一機的情況,建議採用三人小組方式:一人操作、一人紀錄、一人解釋, 輪流 分工參與可促進互動並降低等待時間。

4. 結合實體教具與 VR 對照教學

讓學生在 VR 中觀察槓桿應用後,實際用翹翹板或彈力尺進行實驗,協助從虛擬經驗過渡 到現實應用,形成概念整合。

五、整體教學省思

VR 教材在自然科教學中的應用,確實能有效提升學生的學習動機與空間建構能力,特別對於「力矩」這類需要動態視覺化與體驗的抽象概念而言,具有高度的輔助價值。然而,教師在設計教學時需特別注意技術門檻與設備可用性問題、時間管理與學習成效的平衡,以及如何從「看得見」轉化為「理解並能應用」。未來若能將 VR 與實作探究、概念圖、反思寫作等學習策略整合,將更有助於學生全面性的科學素養培養。