課程及教學規劃表

課程名稱	中文名稱		選修物理 IV(全)						
	英文名稱								
授課年段	高二						學分數	2	
課程屬性	□專題探究		■跨領域/科目專題		□跨領域/科目統整				
	□實作(實驗)		□探索體驗		□特殊需求		□其他		
師資來源	■校內單科		□校內跨科協同		□外聘(大學) [□外聘(其他)		
課綱核心	A.自主行動		■A1.身心素質與自我精進		■A2.系統思考與問題解決■A3.規劃執行與創新應變				
素養	B.溝通互動		■B1.符號運用與溝通表達■B2.和		B2.科技賞	32.科技資訊與媒體素養 ■B3.藝術涵養與美感素養			
	C.社會參與		■C1.道德實踐與公民意識■C2.人際			[C2.人際關	關係與團隊合作 ■C3.多元文化與國際理解		
學生圖像									
學習目標	(2) 3) 強調物理在生活上的實用性與培養探究思考的能力。							
教學大綱	1	選修物理IV 第一章 靜 電學 1 1-1 電荷與 庫侖定律 1-2 電場與 電力線		 2. 3. 4. 5. 7. 	知道電荷守恆短認識電場的概念 電力線概念由認 空間中電場的外部 認識帶電實心等 解金屬球內外的 認識電場的會型 該處電場的向量 $\vec{E} = \frac{\vec{F}}{q} = \frac{q(\vec{E}_1)}{q}$,並能。 定律, 注述, 注述, 注述, 注述, 注述, 注述, 注述, 注述, 注述, 注述	與萬有引力定律比較。 正負電荷所產生的電場差異。 所提出,為假想的線。利用電力線來描述 況,認識各種常見的電力線及其性質。 (半徑為 R、電荷為+Q)的電場,並能了 分布。 : 空間中某處的電場,等於各個帶電體在		
	1-2 電場與 電力線 1-3 電 位 能 與電位		2.	伸,其疏密程度量的,其疏密程度是一种,其疏密,是是一种,其疏容,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种	度維持。 直 Eo。 東 Eo。 東 企 東 企 東 全 東 で 東 で 東 で 東 で 東 で 東 で 東 で 東 で	持定值。且無論與平板的距離為何,電場的			

				的長寬時,平板邊緣的電場不是均勻的,而且兩平行板的外側 也會有微弱的電場。
			4.	帶電粒子在均勻電場中的運動模式,和質點在均勻重力場中的
				運動類似,故電荷的軌跡可能為直線或拋物線。
			5.	電子以初速 v ₀ 水平射入一向下的均匀電場 E 中,其運動軌跡方
				程式:由水平、鉛直方向各作等速、等加速運動可得 $x = v_0 t$
				$\begin{cases} y = \frac{1}{2} a_y t^2 = \frac{1}{2} \left(\frac{eE}{m} \right) t^2 \Rightarrow y = \frac{1}{2} \left(\frac{eE}{m} \right) \left(\frac{x}{v_0} \right)^2 = \frac{1}{2} \left(\frac{eE}{mv_0^2} \right) x^2 \end{cases}$
			_	此為拋物線的方程式,與水平拋射的軌跡方程式相似。
				認識噴墨印表機的運作原理。 由重力位能類比說明電位能概念。而由於電荷有正有負,因此
			/.	雷位能可區分為引力位能、斥力位能兩種。
			8.	多電荷系統的電位能:電位能是純量,每兩個電荷之間即產生
				一電位能,因此只要將兩兩帶電體間的電位能相加,即可得到
			Q	系統的總電位能。 由於靜電力是保守力,故靜電力作功與選取的路徑無關,只與
			<i>)</i> .	起點、終點有關,因此電荷在靜電力的作用下,滿足力學能守
				恒。
			10.	電位的定義:單位正電荷在空間中某點所具有的電位能,即為
				該處的電位。
				$V = \frac{U}{r} = \frac{kQ}{r}$
			11	$V=\overline{}=\overline{}=\overline{}$ 點電荷 Q 在空間產生的電位為 q q r 。
			11.	電荷有正有負,因此電位有高有低。若Q為正電荷,則電位恆
				為正,正電荷的電位隨著距離r增加而降低。若Q為負電荷,
			10	則電位恆為負,負電荷的電位隨著距離r增加而升高。
			12.	電位的疊加:若有多個帶電體同時存在,多個帶電體在該點產 生的電位為
				_ · ·
				$V = \frac{U}{q} = \frac{kQ_1}{r_1} + \frac{kQ_2}{r_2} + \dots + \frac{kQ_N}{r_N} = V_1 + V_2 + \dots + V_N$
				即空間中某處的電位等於所有電荷在該處造成的電位總和。
				$V(x) = \frac{U(x)}{q} = \frac{qEx}{q} = Ex$ 亚行露柘間的露价为。
			1.	平行電板間的電位為
				兩電板間的電位差 ΔV (俗稱電壓)為
				$\Delta V = V(d) - V(0) = Ed - 0 = Ed$
		1-3 電位能	2.	電荷的運動傾向:
	3	與電位		(1)正電荷在電場中釋放,受靜電力作用有從高電位移至低電位 的傾向。
	J	實驗1:等位		(2)負電荷在電場中釋放,受靜電力作用有從低電位移至高電位
		線與電場		的傾向。
				(3)正電荷在高電位處具有較高的電位能,而負電荷在低電位處
				則具有較高的電位能,因此無論是正電荷或負電荷,兩者都有 由「高電位能」往「低電位能」處移動的傾向。
			3.	等位面與等位線:
				(1)電荷在空間產生電場與電位,其中電場可由電力線描繪,而

電位則可由等位面提供直觀的圖像。

- (2)等位面是空間中電位相同的點所連成的曲面,例如平行電板間的等位面,是一系列平行的平面,而點電荷的等位面,則是一系列的同心球面。
- (3)從無限大平行電板可看出電力線總是與等位面垂直,即使是 其他的帶電體,電力線(電場)總是處處垂直於等位面。
- (4)若選取電荷所在的平面進行分析,原先等位面可表示為平面上的線,稱為等位線,等位線與電力線仍然保持垂直。
- 4. 當導體處於靜電平衡時,整個導體的電位相同,稱為等位體。 因為導體內若電位不同,則電位差會驅動電荷移動,直到達成 靜電平衡,故平衡後整個導體為等位體。
- 5. 導體靜電平衡時的性質:
 - (1)導體內的電場為零:導體內部的電位差為零,故其電場亦為零。
 - (2)導體表面為等位面:整個導體(包含導體表面)為等位體, 故其表面為等位面。
 - (3)導體電荷分布於導體表面:導體內部電場為零,故內部沒有 淨電荷,因此電荷只能分布於導體表面。
 - (4)導體表面的電場垂直表面:導體表面為等位面,而電場必定 垂直於等位面,因此表面的電場垂直表面。
- 6. 帶靜電金屬球(金屬球電荷+Q、半徑R)的電場與電位:由於電荷只能均勻分布於球面上,在球內沒有電力線,因此無論是實心或是空心導體球,其內、外的電位與電場分布都相同。

(1)球内 (r < R):

球內沒有電力線通過,故球內的電場為零,E=0; 整個金屬球為等位體,其電位等於金屬球表面的電位,

$$V = \frac{kQ}{R}$$

(2)球外 (r≥R):

電場、電位皆與電荷集中於球心時相同,故

$$E = \frac{kQ}{r^2} \cdot V = \frac{kQ}{r} .$$

- 7. 靜電屏蔽:導體達靜電平衡時,其內部的電場為零,不會因為 導體外部是否存在電場而改變;因為導體內部不受導體表面上 的電荷或外在電場的影響,此種現象稱為導體的靜電屏蔽。
 - (1)當導體外加一電場時,導體表面的自由電子會重新分布,使 得導體表面電荷在內部產生的電場 E',與外加電場 E 互相抵 消,最後導體內部又會回到電場為零,這就是導體靜電屏蔽的 原因。
 - (2)導體內部如果有空洞,只要空洞內沒有電荷,則空洞中的電場仍不受外在電場的影響,保持為零。
 - (3)導體如果接地,無論導體為實心或空心,其內部仍不受導體外部電場的影響。
- 8. 操作「等位線與電場」實驗。

第二章 電 流的磁效應 2-1 電流與 磁場

4

- 1. 認識電流的定義與單位。
- 2. 電流的方向:
 - (1)電流來自正電荷的移動,則電流方向與正電荷移動方向相 同。
 - (2)電流來自負電荷的移動,則電流方向與負電荷移動方向相

2-2 載流導 線產生的磁 反。

- 3. 磁力線概念由法拉第所提出,用來描述空間中磁場的分布狀 況,磁力線的性質有:
 - (1)磁力線永遠形成封閉曲線:在磁鐵外部由 N 極出發,回到 S 極,在磁鐵內部則由 S 極,再回到 N 極。
 - (2)磁力線的切線方向即為磁針 N 極在該處的方向,代表磁場的 方向。
 - (3)磁力線的密度與小磁針在該處所受磁力成正比,代表磁場量 信。
 - (4)磁力線不會相交。
- 4. 認識電流的磁效應與安培右手定則。
 - (1)載流直導線:右手拇指伸直指向電流方向,四指彎曲方向為 導線周圍的磁場方向。
 - (2)載流圓形線圈:四指彎曲方向為電流方向,拇指伸直的方向 為圓形線圈中心處的磁場方向。
- 5. 認識必歐一沙伐定律,

$$\Delta \vec{B} = \frac{\mu_0}{4\pi} \frac{I\Delta \vec{\ell} \times \hat{r}}{r^2} \left(\vec{\boxtimes} \Delta \vec{B} = \frac{\mu_0}{4\pi} \frac{I\Delta \vec{\ell} \times \vec{r}}{r^3} \right)$$

 $\Delta \vec{B}$ 的量值:若 $\Delta \vec{\ell}$ 與 \hat{r} 的夾角為 θ ,則電流元產生的磁場量值

可表示為
$$\Delta B = \frac{\mu_0}{4\pi} \frac{I\Delta\ell\sin\theta}{r^2}$$
 。

 $(1)\theta = 0^{\circ}$ 或 180° (在電流元的前方或後方),則 $\Delta B = 0$ 。

$$\frac{\mu_0}{4\pi} \frac{I\Delta \ell}{r^2} \propto \frac{1}{r^2}$$

 $(2)\,\theta$ = 90°(與電流元垂直的位置),則 $\Delta B = \frac{\mu_0}{4\pi}\,\frac{I\!\Delta\ell}{r^2} \propto \frac{1}{r^2}$ 磁場 ΔB 與 r^2 成 反 나 、 注 文 r^2 磁場 ΔB 與 r^2 成反比,這部分與點電荷建立的電場量值與距離 平方成反比相同。

$$\frac{\mu_0 I R^2}{2(a^2 + R^2)^{\frac{3}{2}}}$$

6. 圓線圈中心軸上的磁場: $B = \frac{\mu_0 I R^2}{2(a^2 + R^2)^{\frac{3}{2}}}$ 圓線圈中心軸上的磁場: $B = \frac{\mu_0 I R^2}{2(a^2 + R^2)^{\frac{3}{2}}}$

(1)P 點距離圓心極遠 (a>>R):B=

$$\frac{\mu_0 I R^2}{2(a^2 + R^2)^{\frac{3}{2}}} \approx \frac{\mu_0 I R^2}{2(a^2)^{\frac{3}{2}}} = \frac{\mu_0 I R^2}{2a^3} \propto \frac{1}{a^3}$$

$$\frac{\mu_0 I R^2}{2(R^2)^{\frac{3}{2}}} = \frac{\mu_0 I}{2R}$$

 $\frac{\mu_0 I R^2}{(2)$ [②] 心處(a=0)的磁場: $B=\frac{2(R^2)^{\frac{3}{2}}}{2R}$ (3) 国心免失。

(3)圓心角為 θ 的載流圓弧導線在圓心處產生的磁場:

$$B = \frac{\mu_0 I}{2R} \cdot \frac{\theta}{2\pi} = \frac{\mu_0 I \theta}{4\pi R}$$

7. 長螺線管的磁場 =
$$B = \mu_0 \frac{N}{L} I = \mu_0 nI$$
 。

- 8. 螺線管的應用:
 - (1)均勻磁場:實驗室常須均勻磁場提供實驗之用,螺線管為常 用的裝置。
 - (2)電磁鐵:螺線管中插入容易磁化的鐵心,即為電磁鐵,利用 電流控制磁場的方向與量值,可用於搬運貨櫃的起重機、磁浮

			列車等。
			1. 載流直導線在均勻磁場中所受的磁力: $\overrightarrow{F} = I \overrightarrow{\ell} \times \overrightarrow{B}$ 。
			磁力的量值 $F = I \overrightarrow{\ell} B \sin \theta$, $\theta $
			$\theta = 90^{\circ} \Rightarrow F = Fmax = I\ell B$
		2-3 載流導 線所受的磁 力 實驗 2:電流 天平	$\theta \neq 0^{\circ} \cdot 90^{\circ} \cdot 180^{\circ} \Rightarrow F = I^{\ell} B \sin \theta$
			2. 任意形狀的載流導線在均勻磁場中所受的磁力:上述的磁力公式仍然適用,此時載流導線所受的磁力,只跟連接端點的長度向量有關,與如何彎曲的細節無關。
			3. 封閉載流導線,由於連接端點的長度為零(起點與終點重合),
			因此封閉載流導線在均勻磁場中所受的磁力必為零。 4. 平行載流導線間的磁力:
	5		(1)同向載流導線間的磁力:彼此相吸,且兩導線上單位長度所
			$rac{F_1}{\ell} = rac{F_2}{\ell} = rac{\mu_0 I_1 I_2}{2\pi r}$ 。 受磁力的量值相等,即 $rac{F_1}{\ell} = rac{F_2}{2\pi r}$ 。 (2)反向載流導線間的磁力:彼此相斥,且兩導線上單位長度所 受磁力的量值相等,即 $rac{F_1}{\ell} = rac{F_2}{\ell} = rac{\mu_0 I_1 I_2}{2\pi r}$ 。
			受磁力的量值相等,即 ℓ 2π 。 5. 電動機是一種將電能轉換成力學能的裝置,利用載流導線在磁場中受力的原理,會使線圈順時針轉動。當線圈每轉半圈,線圈中的電流即改變方向,但換向器隨線圈轉動,與不同的電刷交替接觸,使換向器與電源的正、負極也交替連接,因此所受
			力矩的方向即可維持不變,故可繼續做同一方向的轉動。 6. 操作「電流天平」實驗。
			7. 帶電粒子所受的磁力: $\vec{F} = q\vec{v} \times \vec{B}$ 。
			8. 勞侖茲力:帶電粒子通過電場 \vec{E} 與磁場 \vec{B} 同時存在的區域時, 會受到靜電力與磁力的作用,此電磁力稱為勞侖茲力,即
			$\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \times \overrightarrow{B} .$
			9. 速度選擇器:藉由互相垂直的電場與磁場,篩選出以特定速度 運動的質點。
			10. 認識帶電質點在磁場中的軌跡。
6			11. 當帶電質點的初速與磁場平行 ($\theta = 0^{\circ}$ 、180°): 質點所受磁力 為零,故在磁場中作等速直線運動。
		2-4 帶電質 點在磁場的	局令,战任磁场中下等还直線運動。 12. 當帶電質點的初速與磁場垂直(θ=90°):電荷所受的磁力恆與
	6	運動	速度垂直,故質點作等速圓周運動,此時磁力為圓周運動的向心力,量值為 qvB。
			$F = qvB = m \frac{v^2}{r}$ (1)向心力:
			$r = \frac{mv}{qB} = \frac{p}{qB} = \frac{\sqrt{2mK}}{qB}$ 。
			(2)迴旋半徑: <i>qB qB qB</i> 。
			$\frac{q}{m} = \frac{v}{Br}$ (3)荷質比:帶電質點的電荷與質量的比值,即 $\frac{m}{m} = \frac{Br}{Br}$ 。
			在速率 v 與磁場量值 B 已知的情形下,測量帶電質點的迴旋半徑 r ,即可推得其荷質比。

		(4	-)迴旋頻率與週	週期、角速度:							
		,			$2\pi m$						
		(I	<i>)</i> 週期 <i>I</i> = 	$\frac{1}{r} = \frac{2\pi}{v} \cdot \frac{mv}{qB} =$	\overline{qB} °						
		(2	∑迴旋頻率ƒ=	$\frac{1}{T} = \frac{qB}{2\pi m} \circ$							
		(3)角速度 ω = 2	$2\pi f = 2\pi \cdot \frac{qB}{2\pi m}$	$=\frac{qB}{m}$ \circ						
			13. 當帶電質點的初速與磁場既非平行亦非垂直:質點一邊作等速 圓周運動,一邊以等速前進,故帶電質點的軌跡為螺旋線。								
	$F = qv_{\perp}B = m\frac{v_{\perp}^2}{r}$ 。										
	$r = \frac{mv_{\perp}}{qB} = \frac{mv \sin \theta}{qB}$ (2) 迴旋半徑:										
		(2) 迴旋半徑: q^B 。 (3) 迴旋頻率與週期、角速度:									
					$2\pi m$						
		①週期 $T = \frac{2\pi r}{v_{\perp}} = \frac{2\pi}{v_{\perp}} \cdot \frac{mv_{\perp}}{qB} = \frac{2\pi m}{qB}$ 。									
	②迴旋頻率 $f = \frac{1}{T} = \frac{qB}{2\pi m}$ 。										
		(3	③角速度 $\omega = 2\pi f = 2\pi \cdot \frac{qB}{2\pi m} = \frac{qB}{m}$ 。								
	(4)螺距:質點在一個週期的時距內沿磁場方向移動的距離,										
	$d = v_{\parallel}T = v \cos\theta \cdot \frac{2\pi m}{qB} = \frac{2\pi m v \cos\theta}{qB}$										
	qB qB										
學習評量	課本練習題(含素養題)、習作簿(含閱讀題)、分冊講義(含基礎題、進階題、大考題與素養題)										
	測驗卷(含素養題)										
對應學群	□資訊	□工程	■數理化	□醫藥衛生	□生命科學	□生物資源					
	□地球環境	□建築設計	□藝術	□社會心理	□大眾傳播	□外語					
	□文史哲	□教育	□法政	□管理	□財經	□遊憩運動					
備註											