彰化縣立信義民中小學 113 學年度第一學期風光大校教學計畫

領域/科目		彈性課程-風光大校		設計者	楊小瑩			
實施年級		八年級		總節數	共_3_節			
單元名稱 轉		轉重	動的能量-走馬燈					
設計依	設計依據							
			● An-IV-1		● 理解轉動具有能量			
	學習表	習表現	● 察覺到科學觀察、測量和力		● <u>能說明走馬燈不斷轉動</u>			
學習			法是否具有正當性是受到社	- 學習	是因為原有能量不耗			
壬毗			會共同建構的標準所規範。		損,使其因慣性而持續			
重點			● 能理解氣體流動具有動能	1470	<u>轉動</u>			
	學習目		● 能說明走馬燈持續轉動的原	<u> </u>				
			理。					
學習活	動		● 觀賞並說明走馬燈轉動原理					
			● 自製走馬燈					
			● 分析不同變因對轉動速度的影響					
與其他領域/科目		十目	● 自然領域/理化科					
的連結								
教材來源			教師準備材料(紙杯,鐵絲,廢棄光碟片,蠟燭),學生自備工具(尖嘴					
			鉗,膠帶,美工刀)					
教學設備/資源			投影機,筆電。					
評量方式			能自製簡易走馬燈利用蠟燭空氣使其轉動。					

能量轉換探究活動—人生走馬燈 活動紀錄單

班級: 801 802 803 研究員姓名座號:
回活動目標
了解走馬燈轉動原理並調整找出變因,製作出最穩定且轉速最快的紙杯走馬燈。
回參考變因
1.上方扇葉開口數量 2. 側邊扇葉開口數量 3. 上方扇葉開口角度大小
4.側邊扇葉開口角度大小 5.蠟燭與紙杯的高度 6.上方與側邊開口方向是否相同
7.紙杯的高度 8.其他
回實驗記錄

變因	項目	數值	數值
操縱	Ex:上方扇葉開口數		
控制	Ex:側邊扇葉開口數量		
	Ex:紙杯的高度		
	Ex:上方與側邊開口方向		
應變	第 1 次測試(轉/30 秒)		
	第 2 次測試(轉/30 秒)		
	第 3 次測試(轉/30 秒)		
	平均轉速(轉/30 秒)		

_	幸	驗	/\	+	CEJ	1.+	<u></u>
	=	400	$\neg \neg$	MT	FJJŦ	z =	=imi
	9	ハハスズ	71	17.1	$\overline{}$	π	

我們發現紙杯在	的狀況下,	轉速比較快。
---------	-------	--------

走馬燈...人生走馬燈!?

- 「走馬燈」是我國的獨特發明, 大約在11世紀,約宋代就有關 於它的記載。
- ○燈的各個面上都繪有古代武將 騎馬的圖畫,而在燈轉動時這 些馬就好像在奔跑一樣,故而 得名。

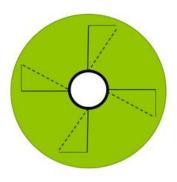
走馬燈原理

- 「走馬燈」是根據熱空氣 上升產生推力的原理製成 的。
- 點燃燈內的蠟燭,被加熱的空氣,體積膨脹的同時密度減小,在燈筒內徐徐上升。
- 運動的熱空氣便推動紙風車和固定在轉軸上的紙馬轉動起來。

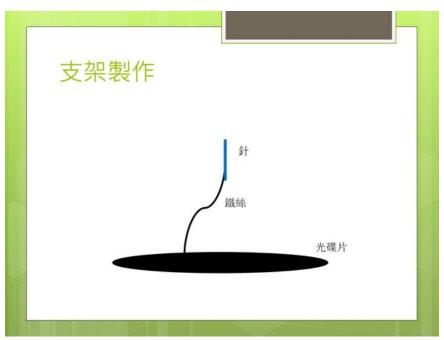
走馬燈的能量轉換

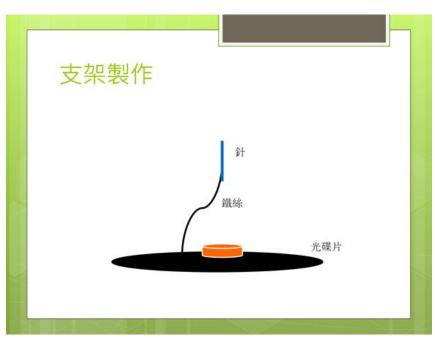
- (蠟燭)產出的 熱能→帶動 (扇葉)動能
- ●類似近代燃氣 輪機

請設計出你專屬的紙杯走馬燈


- ●紙杯,蠟燭,針,光碟片,鐵絲由老師統一提供。
- ○三人一組,挑選變因,製作出2個走 馬燈。
- ◆小組自備:剪刀,美工刀,尺,筆, 量角器,膠帶
- ○分析紀錄何種條件下的走馬燈轉速最快。

怎麼讓走馬燈轉得又快又穩?


- ▶上方扇葉開口一定要8個嗎?越多越好嗎?
- ○若側邊加開口,會轉得更快嗎?越多越好嗎?
- ○開口若是順時針方向,則旋轉方向為?
- ○上方開口與側邊開口一定要同方向嗎?
- ○開口的角度會影響旋轉快慢嗎?


燈罩製作1-**杯底**切割範例

燈罩製作2-**杯身**切割範例

