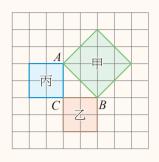
畢氏定理

- 単氏定理 ② 畢氏定理的生活應用 ③ 距離公式

溫故啟思

右圖方格紙中,每個小方格的邊長都是1。分別 以直角三角形 ABC 的三個邊向外作正方形:

- (1) 正方形甲的面積為 8 。
- (2) 正方形乙、丙的面積和為 8 。
- (3) 正方形甲面積 = 正方形乙面積+正方形丙面積。 (填>、=或<)



檢測概念

讓學生由圖感受畢 氏定理,但還不須 提及定理名稱。

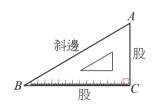
畢氏定理

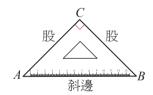
小學時,我們曾學過直角三角形,

例如:我們常用的三角板就是直角三角形。

如下圖,在直角三角形 ABC中,角 C 為直角(簡記為 $\angle C = 90^{\circ}$),

直角所對的邊稱為斜邊,另外兩邊稱為股。





在溫故啟思問題中的直角三角形 ABC,我們可以發現分別以兩股長為邊所 做的正方形面積和,會等於以斜邊為邊長所做的正方形面積。是不是所有的直角 三角形都有如此的關係呢?

學習內容

- S-8-6 畢氏定理: 畢氏定理(勾股弦定理、商高定理)的意義及其數學史; 畢氏定理在生活上的應用; 三邊長滿足畢氏定理的三角形必定是直角三角形。
- G-8-1 直角坐標系上兩點距離公式: 直角坐標系上兩點 A(a,b) 和 B(c,d) 的距離為 $\overline{AB} = \sqrt{(a-c)^2 + (b-d)^2}$; 生活上相關問題。

教學提醒 1

- 2. 讓學生能對畢 氏定理「兩股 長平方和等於 斜邊長平方」 的代數型式與 其幾何意義連 結。

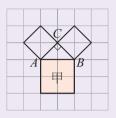
探索活動

4 畢氏定理的發現

で在下圖(-), △ABC 中是一個等腰直角三角形,分別以此等腰直角三角形的兩股為邊長作兩正方形,這兩個正方形面積的和,與正方形甲的面積有何關係?

甲的面積=2×2=4,

 \overline{AC} 為邊長的正方形面積 = 2, \overline{BC} 為邊長的正方形面積 = 2, 2+2=4。



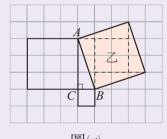
圖(一)

室 在下圖(二)中,分別以此直角三角形的兩股為邊長作兩正方形,這兩個正方形面積的和,與正方形乙的面積有何關係?

乙的面積= $\frac{3}{2} \times 4 + 4 = 10$,

 \overline{AC} 為邊長的正方形面積 = 9, \overline{BC} 為邊長的正方形面積 = 1,

9 + 1 = 10 °



圖(二)

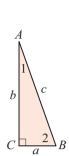
答:<u>相等</u>;此時 $\overline{AC}^2 + \overline{BC}^2$ ____ \overline{AB}^2 。(填入<、=或>)

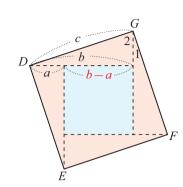
在探索活動的例子中,可以發現這兩個直角三角形兩股的平方和會等於斜 邊的平方,一般直角三角形是否也有如此的性質?我們利用探索活動問題2中, 正方形乙的分割方式來做說明。

教學補給站

傳說無理數最早由<u>畢達哥拉斯</u>學派弟子<u>希帕索斯</u>發現,他證明出√2 無法用整數及分數表示,並引發了第一次數學危機。而<u>畢達哥拉斯</u>深信任意數均可用整數及分數表示,不相信無理數的存在。因此當<u>畢達哥拉斯</u>發現√2 為無理數時,大為震驚。而<u>希帕索斯</u>因觸犯學派章程,向外人透露無理數的存在後,畢達哥拉斯便下令將其淹死。

如下左圖, $\triangle ABC$ 為直角三角形,其中 $\angle C = 90^{\circ}$,三邊長分別為 $a \cdot b \cdot c \circ$ 用 4 個與△ABC 相同的直角三角形和一個小正方形,可以拼成一個四邊形 DEFG (如下右圖),





- ① 因為直角三角形 ABC 中, $\angle 1$ 與 $\angle 2$ 的和為 90° ,所以四邊形 DEFG 的四個 角都是 90° ,且四邊等長,邊長為 c,因此四邊形 DEFG 為正方形,且面積 為 c^2 。
- ② 由圖可知面積 $c^2 = 4 \times \frac{1}{2} ab + (b-a)^2$ $=2ab+b^2-2ab+a^2$ $= a^2 + b^2 \circ$

由上面的說明,我們得到了一個很重要的幾何定理:

畢氏定理

任一直角三角形 ABC 中,若 $\angle C = 90^{\circ}$,則兩股長 平方和等於斜邊長平方,即 $\overline{BC}^2 + \overline{CA}^2 = \overline{AB}^2$ 。

$$\overline{BC^2 + \overline{CA}^2} = \overline{AB}^2 \circ B$$

$$a^2 + b^2 = c^2$$

畢氏定理在幾何 問題中經常被拿 來應用,老師應 要求學生熟記此 定理。

類題演練 配合課文

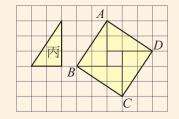
在右圖的方格紙中,每個小方格的邊長都是1。試回答下列問題:

(1) 直角三角形丙的斜邊長是多少?

解**▶**√13。

(2) 直角三角形丙的兩股長平方和是否等於斜邊長平方?

解▶是。



教學提醒 ①

課文除了提供 <u>商高</u>的證明方法, 在數養廣角鏡另 有補充其他證明 方式,老師可視 學生狀況補充。 19 據說是古<u>希臘</u>哲學家<u>畢達哥拉斯</u>(約公元前 569 年~500 年)或他的學生首次給出畢氏定理的證明。右圖為 <u>希臘</u> 1955 年為了紀念<u>畢</u>氏學派建立 2500 年而發行的 郵票。

畢氏定理這個重要的幾何定理,在不同文化的數學發展中都有發現,在<u>中國</u>傳統算法裡也曾出現過。右圖為<u>中國</u>古書《周髀算經》中出現的弦圖,<u>商高</u>回答<u>周公</u>的問題時,提到直角三角形中「勾廣三,股修四,徑隅五」的例子,因此這個定理也稱為<u>商高</u>定理(又稱勾股定理)。

沙數養時光機

數學時光機:《周髀算經》

三國時吳國的<u>趙爽</u>為古算書《周髀算經》提到<u>商高</u>定理作注解時,配合上面的弦圖説到:「勾股相乘為朱實二,倍之為朱實四;以勾股之差自相乘為中黃實,加差實亦成弦實。」這個説法就是課本 P.97 上提供的方法。

一個朱實為一個紅色直角三角形,「勾×股」等於兩個 紅色直角三角形,再乘以2等於四個紅色直角三角形。

② 黃實為中間的黃色正方形,邊長為「勾股之差」, 面積為「勾股之差」的平方。

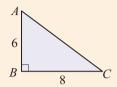
3 4個朱實+1個黃實等於弦實(大正方形), 所以「勾×股×2+(勾股之差)²=弦²」, 由弦圖上的數據可知,3×4×2+(4-3)²=5²。

教學補給站

關於 $\underline{\underline{u}}$ 氏定理的證明相當的多,網路上亦有許多相關資源可應用於教學,以下連結之影片為 TED 關於 $\underline{\underline{u}}$ 氏定理的說明影片(有中文字幕):(可掃描 $QR\ code$) https://youtu.be/YompsDlEdtc

利用畢氏定理求長度

- \overline{AC} 的長度。
- (1) 求直角三角形 ABC 中,斜邊 (2) 求矩形 EFGH 中, \overline{FG} 的長度。



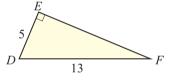
- (1) 由畢氏定理可知: $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2$, 亦即 $\overline{AC}^2 = 6^2 + 8^2 = 36 + 64 = 100$, 因此 $\overline{AC} = \pm \sqrt{100} = \pm 10$,又因為邊長為正,故 $\overline{AC} = 10$ 。
 - (2) 在矩形 EFGH 中, $\triangle EFG$ 為直角三角形且 $\angle F$ 為直角, 因此由畢氏定理可知: $\overline{EG}^2 = \overline{EF}^2 + \overline{FG}^2$, 亦即 $10^2 = 7^2 + \overline{FG}^2$, $100 = 49 + \overline{FG}^2$, $\overline{FG}^2 = 100 - 49 = 51$, 因此 $\overline{FG} = \pm \sqrt{51}$,又因為邊長為正,故 $\overline{FG} = \sqrt{51}$ 。

隨堂練習

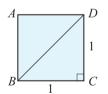
(1) 求右圖直角三角形 DEF 中,一股 EF 的長度。 $13^2 = 5^2 + \overline{EF}^2$, $169 = 25 + \overline{EF}^2$,

$$\overline{EF}^2 = 169 - 25 = 144$$

因此 $\overline{EF} = \pm 12$,又因為邊長為正,故 $\overline{EF} = 12$ 。



(2) 求右圖正方形 ABCD 中, \overline{BD} 的長度。 $\overline{BD}^2 = 1^2 + 1^2 = 2$, 因此 $\overline{BD} = \pm \sqrt{2}$,又因為邊長為正,故 $\overline{BD} = \sqrt{2}$ 。



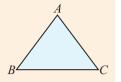
配合例題 1

- 1. 已知直角三角形的兩股長分別為 5 與 7,試問斜邊長是多少?
- 2. 已知直角三角形一股長為 $\sqrt{3}$,斜邊長為 2,試問另一股長是多少?
- 3. 已知直角三角形的兩股長皆為 6, 試問斜邊長是多少?
- 解**▶**√74。
- 解▶1。
- 解▶ $6\sqrt{2}$ 。

等腰三角形的高

已知等腰三角形 ABC 中, $\overline{AB} = \overline{AC} = 10$, $\overline{BC} = 12$,求:

- (1) BC 上的高。
- (2) △ABC 的面積



(1) 過 A 點作底邊 \overline{BC} 上的高 \overline{AD} ,

因為等腰△ABC 為線對稱圖形,

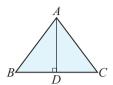
所以垂足D點為 \overline{BC} 的中點,

故
$$\overline{BD} = \frac{1}{2} \times 12 = 6$$

中畢氏定理知: $\overline{AB}^2 = \overline{AD}^2 + \overline{BD}^2$, 即 $\overline{AD}^2 = \overline{AB}^2 - \overline{BD}^2$

因此 \overline{BC} 上的高 $\overline{AD} = \sqrt{10^2 - 6^2} = \sqrt{64} = 8$

(2) $\triangle ABC$ 的面積 = $\frac{1}{2} \times \overline{BC} \times \overline{AD} = \frac{1}{2} \times 12 \times 8 = 48$ 。



隨堂練習

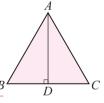
已知一正三角形 ABC 邊長為 10,求此正三角形的高與面積。

因為正 $\triangle ABC$ 為線對稱圖形,所以垂足 D 點為 \overline{BC} 的中點,

則
$$\overline{BD} = \frac{1}{2} \times 10 = 5$$
,

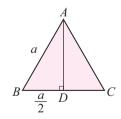
因此正三角形的高 $\overline{AD} = \sqrt{\overline{AB}^2 - \overline{BD}^2} = \sqrt{10^2 - 5^2} = \sqrt{75} = 5\sqrt{3}$

故正 $\triangle ABC$ 的面積 = $\frac{1}{2} \times 10 \times 5\sqrt{3} = 25\sqrt{3}$



事實上, 仿照例題 2 與隨堂練習的過程, 我們可以得到當 正三角形邊長為a(a>0)時,

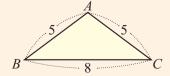
高 =
$$\sqrt{a^2 - (\frac{a}{2})^2} = \frac{\sqrt{3}}{2}a$$
; 面積 = $\frac{1}{2} \times a \times \frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{4}a^2$ 。



類題演練 配合例題 2

如右圖,已知一等腰三角形 ABC 中, $\overline{AB} = \overline{AC} = 5$, $\overline{BC} = 8$, 求此等腰三角形的高與面積。

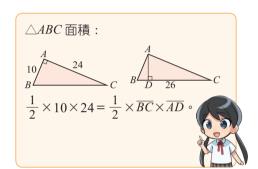
解▶高=3;面積=12。



例 3 斜邊上的高

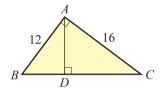
如右圖,直角三角形 ABC 中, $\angle BAC$ 是 直角, $\overline{AB} = 10$, $\overline{AC} = 24$,求:

- (1) 斜邊 \overline{BC} 的長度。
- (2) 斜邊上高 \overline{AD} 的長度。
- $\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2 = 10^2 + 24^2 = 676$, $\overline{BC} = \pm 26$ (負數不合),故 $\overline{BC} = 26$ 。
 - (2) 直角三角形 ABC 面積 $= \frac{1}{2} \times \overline{AB} \times \overline{AC} = \frac{1}{2} \times \overline{BC} \times \overline{AD},$ $\mathbb{D} \frac{1}{2} \times 10 \times 24 = \frac{1}{2} \times 26 \times \overline{AD},$ $\text{故 } \overline{AD} = \frac{10 \times 24^{12}}{26_{13}} = \frac{120}{13} \text{ } \circ$



隨堂練習

如右圖,直角三角形 ABC 中, $\angle BAC$ = 90° , \overline{AB} = 12, \overline{AC} = 16,求斜邊上高 \overline{AD} 的長度。 \overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2 = 12^2 + 16^2 = 144 + 256 = 400 因為長度為正數,所以 \overline{BC} = $\sqrt{400}$ = 20 \circ

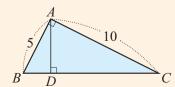


$$\frac{1}{2} \times 12 \times 16 = \frac{1}{2} \times 20 \times \overline{AD}$$
$$\Rightarrow \overline{AD} = \frac{12 \times 16}{20} = \frac{48}{5}$$

類題演練 配合例題 3

如右圖,直角三角形 ABC 中, \angle BAC 是直角, $\overline{AB}=5$, $\overline{AC}=10$, 求斜邊上高 \overline{AD} 的長度。

解▶ 2√5。



? 迷思診療

斜邊是哪一邊?

依霖在做畢氏定理的練習時,

她利用畢氏定理來解題,過程如下:

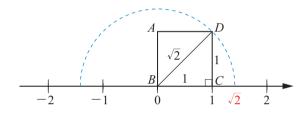
中畢氏定理知 $\overline{AC}^2 + \overline{BC}^2 = \overline{AB}^2$ 得到 $4^2 + 3^2 = x^2$,

因此x=5,請問依霖的做法正確嗎?並請說明理由。

不正確。因為x並非為斜邊,所以正確應為 $3^2+x^2=4^2$, $x^2=16-9=7$,

 $x = \pm \sqrt{7}$ (負不合)。

我們在 2-1 節作出了面積為 2 的正方形,其邊長為 $\sqrt{2}$,如果將這一段的長度畫在數線上,即可在數線上找出坐標為 $\sqrt{2}$ 的點,如下圖。那麼其他的平方根也可在數線上找到相對應的點嗎?

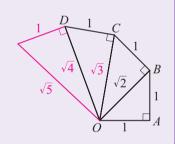


探索活動

畫出長度為√5 的線段

根據右圖,回答下列問題:

- (1) 哪一段長度為 $\sqrt{3}$? $\overline{OC}^2 = \overline{OB}^2 + \overline{BC}^2 = (\sqrt{2})^2 + 1^2, \overline{OC} = \sqrt{3}$ 。
- (2) 在右圖上依照同樣的方式作出一股長為 1 的 直角三角形,畫出長度為 $\sqrt{5}$ 的線段。



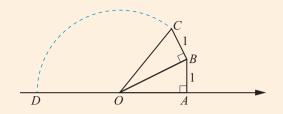
在探索活動中,我們可依序畫出長度為 $\sqrt{2}$ 、 $\sqrt{3}$ 、 $\sqrt{4}$ ……的線段,仿照同樣的方法,只要調整直角三角形的兩股長,就可畫出特定的方根。(可參考附錄二及附件7,摺出畢氏螺線。)

教學補給站

我們也可利用摺紙的方式摺出平方根,同時如探索活動的過程,可將連續的平方根摺出成為螺線的形式,詳細過程可參考以下連結的影片内容:(可掃描 $QR\ code$) https://youtu.be/DLEfGOHATuY

例 4 找出坐標為 \sqrt{a} 的點

如右圖,在數線上,O 為原點, A 點坐標為 2,且在直角三角形 OAB 與 OBC 中, $\overline{AB} = \overline{BC} = 1$, 試問:

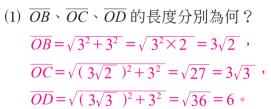


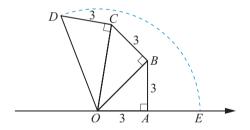
例題 4 的目的在 於讓學生知道 「可以在數線上 找出√a 的位置

- (1) \overline{OB} \setminus \overline{OC} 的長度分別為何?
- (2) 若 $\overline{OD} = \overline{OC}$,則 D 點坐標為何?
- $egin{aligned} egin{aligned} eg$
 - (2) 因為 $\overline{OD} = \overline{OC} = \sqrt{6}$, 所以 D 點在原點左邊 $\sqrt{6}$ 個單位長,故 D 點坐標為 $-\sqrt{6}$ 。

隨堂練習

如右圖,在數線上,O 為原點,且在 直角三角形 $OAB \setminus OBC$ 與 OCD 中, $\overline{OA} = \overline{AB} = \overline{BC} = \overline{CD} = 3$,試問:



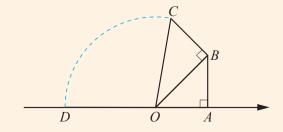


(2) 若 $\overline{OE} = \overline{OD}$,則 E 點坐標為何? 因為 $\overline{OE} = \overline{OD} = 6$, 所以 E 點在原點右邊 6 個單位長,故 E 點坐標為 6 。

類題演練 配合例題 4

如右圖,O 點為數線原點,A 點坐標為 3 ,在直角三角形 OAB 與 OBC 中, $\overline{AB} = \overline{BC} = 3$,且 $\overline{OD} = \overline{OC}$,則 D 點坐標為何?

解▶ $-3\sqrt{3}$

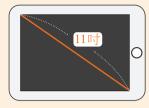


2 畢氏定理的生活應用

<u>畢</u>氏定理是很重要的幾何定理,在生活中也有相當多的應用,接下來我們就來看幾個例子。

例 5 畢氏定理的應用(I)

目前常見的平板螢幕長寬比大約都在 10:7 左右,同時以螢幕對角線的長度標示為螢幕的尺寸。小新家裡新買的一臺 11 吋的平板,若以 10:7 的比例計算長與寬,那麼這臺平板的螢幕長約為多少吋?



因為螢幕的長:寬=10:7,設長為10r,寬為7r,r>0,由畢氏定理可知: $(10r)^2+(7r)^2=11^2$, $149r^2=121$,

$$r^2 = \frac{121}{149}$$
, $r = \pm \frac{11}{\sqrt{149}}$ (負數不合),
故長為 $10 \times \frac{11}{\sqrt{149}} = \frac{110\sqrt{149}}{149}$ 时

如果需要
$$\frac{110\sqrt{149}}{149}$$
 的近似值,可利用計算機計算得 $\frac{110\sqrt{149}}{149}$ ÷ 9.01(时)

隨堂練習

小新的爺爺家中有一臺舊的螢幕長寬比為 4:3 的電視,爺爺說這是 20 吋的電視,那麼螢幕的寬約為多少吋呢?

因為螢幕的長:寬=4:3,假設長為4t时,寬為3t时,t>0,

由畢氏定理可知: $(4t)^2 + (3t)^2 = 20^2$, $25t^2 = 400$,

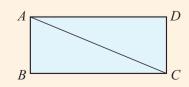
$$t^2 = 16$$
, $t = \pm 4$ (負數不合),

故寬為 3×4(时)=12(时)。

類題演練 配合例題 5

如右圖,已知長方形 ABCD 的邊長比為 12:5,且對角線 \overline{AC} 長為 26,那麼 \overline{AD} 長多少?

解▶ 24



例 6 畢氏定理的應用(II)

某天<u>依霖</u>的空拍機卡在樹上拿不下來,如圖(--)。她拿了一把梯子斜靠在樹上,爬上梯子想要取下空拍機。已知梯子長 250 公分,試問:

- (1) 若梯腳離樹根 150 公分遠,則梯頂離地面的高度為多少公分?
- (2) 她發現擺放高度不夠,將梯腳往前移動了 80 公分後,如圖(二)所示,梯 頂剛好與空拍機位置的高度相同,空拍機離地面多少公分?

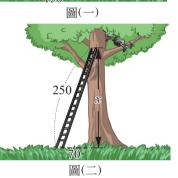
日常生活中有許多問題都可以應 用<u>畢</u>氏定理來解 決,例如:旗桿 的高度測量。

教學提醒

(1) 設此時梯頂離地面的高度為h公分, 由畢氏定理可知: $250^2 = h^2 + 150^2$, $62500 = h^2 + 22500$, $h^2 = 40000$, $h = \pm 200$ (負數不合),

即此時梯頂離地面 200 公分。

(2) 假設梯頂離地面高度為x公分, 又此時梯腳離樹根 70 公分,由畢氏定理可知: $250^2 = 70^2 + x^2$, $x^2 = 62500 - 4900 = 57600$, 因此 $x = \pm \sqrt{57600} = \pm 240$ (負數不合), 可得空拍機離地 240 公分。



2.6

2.4

2 教學提醒

- (1) 此題需提醒學生注意利用畢氏定理算出來的值是否為題目所需。同時需注意算出的答案取整數近似值時,需符合題意要求。
- (2)等號左右兩邊若皆為一元二次的式子之化簡,在4-1節才會正式教學,教師在命題時要避免此題型。

隨堂練習

如右圖,一根長 2.6 公尺的竹竿擺放在牆邊,與牆面、 地面形成一個直角三角形,且竹竿底部離牆面底部 1 公尺。 一段時間之後,竹竿忽然往下滑動到竹竿底部距離牆面 底部 2.4 公尺後停止,此時竹竿頂部下滑了多少公尺? 由墨氏定理得√2.6²-1²=√5.76 = 2.4(公尺),

即竹竿頂離地面的高度為2.4(公尺),

下滑後竹竿頂部離地面的高度為 $\sqrt{2.6^2-2.4^2}=1$ (公尺)

因此頂部下滑了 2.4-1=1.4(公尺)。

教學小幫手

可搭配: 習作 P 27~28 習題 1~4。

類題演練 配合例題 6

已知戶政事務所在警察局西方 500 公尺處,郵局在戶政事務所北方 1200 公尺處,則郵局與警察局的直線距離為多少公尺?

解▶1300公尺。

3 距離公式

依霖到游樂園去玩,拿了張園區地圖, 其中部分地點如右圖,那麼該怎麼計算這些 點之間的距離呢?

在第二冊中,我們學過利用直角坐標系來 描述平面上每一點的位置,因此在右圖中,若 動書 距離公式 游轉 木馬 救護站 $D \bullet$ *A* **餐廳** B商店 出入口

以 O 點為原點,可知 $A(-3,2) \setminus B(4,2) \setminus C(-3,7) \setminus D(3,5)$; 而在第 一冊中,我們學過數線上 $P(a) \setminus Q(b)$ 兩點的距離為|a-b|,我們可以將這 樣的方法應用在坐標平面上來求得任意兩點間的距離,再配合比例尺即可知地圖 上這些地點的距離。

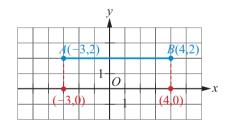
水平、鉛垂線上兩點的距離

教學提醒 1 1

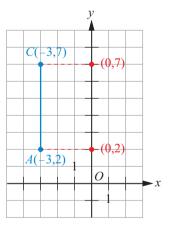
在說明距離公式 的型式之前,學 生應充分理解水 平與垂直兩點間 距離的表示方式, 再由數字特例過 渡到文字符號的 表示。

- (1) 坐標平面上,A(-3,2)、B(4,2) 兩點的距離是多少?
- (2) 坐標平面上, A(-3,2)、C(-3,7) 兩點的距離是多少?

(1) 如圖 $A \times B$ 在同一條水平線上, 所以 $\overline{AB} = |4 - (-3)| = 7$ 。



(2) 如圖 A、C 在同一條鉛垂線上, 所以 $\overline{AC} = |2-7| = 5$ 。



類題演練 配合例題 7

求下列各題中兩點的距離:

- ① 在同一條水平線上, $A(x_1,b) \setminus B(x_2,b)$ 兩點的距離,就是其 x 坐標之差 的絕對值,即 $\overline{AB} = |x_2 - x_1|$ 。
- ② 在同一條鉛垂線上, $C(a, v_1) \setminus D(a, v_2)$ 兩點的距離,就是其 v 坐標之差 的絕對值,即 $\overline{CD} = |v_2 - v_1|$ 。

隨堂練習

求下列各題中兩點的距離:

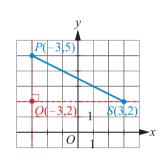
$$(1) \ A \left(\ \frac{1}{2} \ , -3 \ \right) \ \backslash \ B \left(-2 \ , -3 \ \right) \qquad (2) \ C \left(\ 1 \ , -3 \ \right) \ \backslash \ D \left(\ 1 \ , 5 \ \right)$$

(2)
$$C(1,-3) \cdot D(1,5)$$

$$\overline{AB} = |-2 - \frac{1}{2}| = \frac{5}{2}$$

$$\overline{CD} = |5 - (-3)| = 8$$

如果兩點不在同一條水平線或鉛垂線上時,我們 可以仿照例題7的方式求得距離。例如要求P(-3,5)與 S(3,2) 的距離, 分別作過 P 點的鉛垂線與過 S 點 的水平線,兩線交於O(-3,2),如右圖,先計算 $|\overline{SQ}| = |-3-3| = 6$,再計算 $|\overline{PQ}| = |5-2| = 3$,因此由 畢氏定理可得 $\overline{PS} = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}$ 。



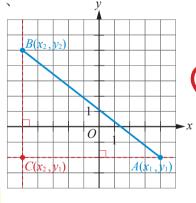
一般而言,對於坐標平面上任意兩點 $A(x_1, y_1)$ 、 $B(x_2, y_2)$ 的距離,如右圖,利用例題7的結論, 先過A點作水平線,過B點作鉛垂線,設此兩線 交於 C 點,則 $\triangle ABC$ 為直角三角形,

C點坐標為 (x_2, y_1) 。

因此 $\overline{AC} = |x_2 - x_1|$, $\overline{BC} = |y_2 - y_1|$,

由畢氏定理可知: $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$,因此

 $\overline{AB} = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$



求兩點的距離時 用哪一點當被減 數都沒有關係, 但是為了與高中 向量課程銜接, 盡量寫成後面的 點減前面的點。

類題演練 配合課文

A點的坐標為(-1,5),B點的坐標為(4,-2),過A點作x軸的垂線,過B點作v軸的垂線, 兩點交於一點 C,求:

- (1) *C* 點的坐標。
- 解▶ (-1,-2)。
- $(2)\overline{AC} \setminus \overline{BC}$ 的長度。 解 $\triangleright \overline{AC} = 7 \cdot \overline{BC} = 5 \circ$
- $(3) \overline{AB}$ 的長度。
- 解 **▶**√74。

由以上討論可知:

距離公式

給定坐標平面上任意兩點 $A(x_1, y_1) \setminus B(x_2, y_2)$,則 $A \setminus B$ 的距離 $\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x \, \text{坐標的差})^2 + (y \, \text{坐標的差})^2} \circ$

例 8 距離公式的應用

已知坐標平面上 $A(4,-2) \times B(2,4) \times C(-3,-1)$ 三點,則 $\triangle ABC$ 的 周長是多少?

解 在△ABC中,

$$\overline{AB} = \sqrt{(2-4)^2 + (4-(-2))^2}$$

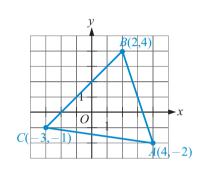
$$= \sqrt{4+36} = \sqrt{40} = 2\sqrt{10}$$

$$\overline{BC} = \sqrt{(-3-2)^2 + (-1-4)^2}$$

$$= \sqrt{25+25} = \sqrt{50} = 5\sqrt{2}$$

$$\overline{AC} = \sqrt{(-3-4)^2 + (-1-(-2))^2}$$

$$= \sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$$



所以 $\triangle ABC$ 的周長 = \overline{AB} + \overline{BC} + \overline{AC} = $2\sqrt{10}$ + $5\sqrt{2}$ + $5\sqrt{2}$ = $2\sqrt{10}$ + $10\sqrt{2}$ 。

隨堂練習

已知坐標平面上A(-1,3)、B(1,-1)、C(4,3)三點,則 $\triangle ABC$ 的周長為多少?

$$\overline{AB} = \sqrt{(1-(-1))^2 + (-1-3)^2} = \sqrt{4+16} = \sqrt{20} = 2\sqrt{5}$$
 $\overline{BC} = \sqrt{(4-1)^2 + (3-(-1))^2} = \sqrt{9+16} = \sqrt{25} = 5$
 $\overline{AC} = \sqrt{(4-(-1))^2 + (3-3)^2} = \sqrt{25+0} = \sqrt{25} = 5$
所以 $\triangle ABC$ 的周長 = $\overline{AB} + \overline{BC} + \overline{AC} = 2\sqrt{5} + 5 + 5 = 10 + 2\sqrt{5}$ 。

類題演練 配合例題 8

已知坐標平面上 $A(3,1) \times B(-5,-1) \times C(1,-7)$ 三點,則 三角形ABC的周長為何? 解 $\triangleright 6\sqrt{2} + 4\sqrt{17}$ 。 回到一開始的問題,若<u>依</u>霖想計算旋轉木馬到救護站的距離,我們就可以利用前面所學的來幫助她,在遊樂園區的地圖上,以出入口為原點,加上兩條垂直的坐標軸後形成坐標平面後的地圖,如右圖。若地圖上每個正方形格線的邊長為 100 公尺,那麼旋轉木馬所在的 C(-3,7) 與救護站所在的D(3,5) 距離為多少公尺呢?由距離公式可知 $\overline{CD} = \sqrt{[3-(-3)]^2+(5-7)^2} = \sqrt{36+4} = \sqrt{40}$ 。

由比例尺可知地圖上1單位長為100公尺,

因此旋轉木馬與救護站間的距離約為 $100 \times \sqrt{40} = 632$ (公尺)。

1 教學提醒

需提醒學生注意 問題所提供的坐 標為地圖上的單 位長,因此依據 坐標計算兩點距 離後,需根據比 例尺調整為實際 距離。

教學小幫手

可搭配: 習作 P 29 習題 5。

2-3 重點整理

1 畢氏定理

任一直角三角形 ABC 中,兩股長平方和等於斜邊長平方, 如右圖, $\overline{AC}^2 + \overline{BC}^2 = \overline{AB}^2$ 。

例 若一直角三角形的兩股長分別為 5 和 12, 則其斜邊長 = $\sqrt{5^2 + 12^2}$ = 13。

2 距離公式

給定坐標平面上任意兩點 $A(x_1, y_1) \cdot B(x_2, y_2)$,則 $A \cdot B$ 兩點的距離 $\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x \, \text{坐標的差})^2 + (y \, \text{坐標的差})^2} \circ$

例 若 $A(2,3) \cdot B(5,7)$, 則 $\overline{AB} = \sqrt{(5-2)^2 + (7-3)^2} = \sqrt{3^2 + 4^2} = 5$ 。

類題演練 配合課文

坐標平面上,A點的坐標為(4,14),B點的坐標為(-1,2),求 \overline{AB} 的長度。 解 \triangleright 13。

(每格 10 分) P.99 例 1 P.100 隨堂

- 1 (1) 直角三角形中,若兩股長分別為3與4,則斜邊長為 5。
 - (2) 已知直角三角形的一股長為 5, 斜邊長為 9, 則另一股長為 2√14 。
 - (3) 有一正三角形的邊長為 6,則此正三角形的高為 $3\sqrt{3}$,面積為

- $(1)\sqrt{3^2+4^2} = \sqrt{25} = 5$
- $(2)\sqrt{9^2-5^2} = \sqrt{56} = 2\sqrt{14}$ •
- (3) 正三角形的高為 $\frac{\sqrt{3}}{2}$ ×6=3 $\sqrt{3}$,面積為 $\frac{\sqrt{3}}{4}$ ×6²=9 $\sqrt{3}$ 。
- **2** 如右圖,四邊形 ABCD中, $\angle B$ 和 $\angle ACD$ (10分) 都是百角。若 $\overline{AB}=5$, $\overline{BC}=2$, $\overline{CD}=3$, 則 \overline{AD} 的長度為何?

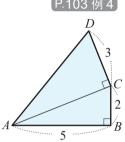
- (C) $\sqrt{21}$
- (D) $\sqrt{20}$

答: (A) 。

$$\overline{AC} = \sqrt{5^2 + 2^2} = \sqrt{25 + 4} = \sqrt{29}$$

$$\overline{AC}^2 = (\sqrt{29})^2 = 29$$

$$\overline{AD} = \sqrt{29 + 3^2} = \sqrt{38}$$



攻學補給站

西方國家稱為「畢 達哥拉斯定理」或 「畢氏定理」。在 中國,《周髀算經 》記載了勾股定理 的一個特例,相傳 是在商代由商高發 現,故又稱之為 商高定理,有時亦 用「勾股弦定理」 或「陳子定理」等 名稱。

3 如右圖,在百角三角形 ABC 中, $\angle BAC$ 為百角, $\overline{AB}=8$, $\overline{AC}=15$,求斜邊上高 \overline{AD} 的長度。

$$\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2 = 8^2 + 15^2 = 289$$
,

可得
$$\overline{BC} = \sqrt{289} = 17$$
。

$$\frac{1}{2} \times 8 \times 15 = \frac{1}{2} \times 17 \times \overline{AD}$$

故得
$$\overline{AD} = \frac{8 \times 15}{17} = \frac{120}{17}$$
。

挑戰會考題

内政部規範無障礙坡道之坡度(高度與水平長度之比值)不得大於 $\frac{1}{12}$ 。已知上下兩平台的高度差為 20 公分,則在符合設計規範的前提下,坡道的長度至少需多少公分?

- (A) $10\sqrt{145}$ 解**▶**(B)。
- (B) $20\sqrt{145}$ (C) $10\sqrt{29}$ (D) $20\sqrt{29}$

4 求坐標平面上,下列各組兩點間的距離:

(每小題 10 分)

(1)
$$A(2,8) \cdot B(-5,7)$$

 $=5\sqrt{2}$

$$\overline{AB} = \sqrt{(-5-2)^2 + (7-8)^2}$$

$$= \sqrt{49+1}$$

$$= \sqrt{50}$$

(2)
$$C(2,-1) \cdot D(6,-5)$$

$$\overline{CD} = \sqrt{(6-2)^2 + (-5-(-1))^2}$$

$$= \sqrt{16+16}$$

$$= \sqrt{32}$$

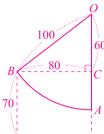
$$= 4\sqrt{2}$$

5 如右圖,公園裡有一個鞦韆,最低處為A點, 已知盪到最高處的 B 點時,其中 C 點為 \overline{BC} 與 \overline{AO} 的垂足, $\overline{OC} = 60$,離地面的高度為 70 公分, 且 $A \setminus B$ 兩點的水平距離為80 公分,試求此鞦 韆在 A 點時離地面多少公分? (8分)

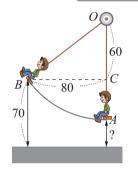
如右圖,因為 $\overline{OC} = 60$, $\overline{BC} = 80$, 由畢氏定理可知: $\overline{OB} = \sqrt{60^2 + 80^2} = \sqrt{10000} = 100$, 因此鞦韆擺盪的半徑長為

 $\overline{OA} = \overline{OB} = 100 (\, \triangle \, \bigcirc \,) ,$

故 A 點離地面的高度為 (60+70)-100=30(公分)。



P.105 例 6



類題演練 配合第4題

求坐標平面上,下列各組兩點間的距離: $(1) A (4,7) \setminus B (7,10)$ 解**▶**3√2。 $(2) C(1,2) \cdot D(8,26)$ 解▶25。

屋屆試題 精熟題

如右圖,平面上有正方形 ABCD 與正方 形DEFG,其中E點在直線BC上,若 $\overline{AE} = 3\sqrt{10}$, $\triangle CDE$ 與 $\triangle ADG$ 的面積均 為 9,則五邊形 ABEFG 的面積為何?

(B) 72 (A) 63

解 **►** (B)。

(C) 81

(D) 90

《109.特招》(桃連區) 題序第 14 題

已知正方形 *ABFG* 與正方形 *BCDE* 的面積分別為 4 和 3,以下是小明、小英與小美三個人由右圖所得到的結論:

小明:在右圖中,因為x2=32+42,所以x=5

小英:由畢氏定理可以得到

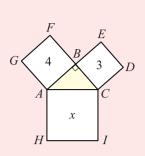
正方形 ABFG 面積+正方形 BCDE 面積

=正方形 AHIC 面積

小美:由畢氏定理可以得到

正方形 ABFG 周長+正方形 BCDE 周長

=正方形 AHIC 周長



請判斷三人的結論是否正確,如果錯誤請更正: (12分)

小明:□正確 ☑錯誤(請打✓)

更正: $x = \overline{AC}^2$

由畢氏定理可以得到 $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2 = 4 + 3 = 7$,故x = 7。

小英:☑正確 □錯誤(請打✓)

更正:

小美:□正確 ☑錯誤(請打✓)

更正:畢氏定理為兩股長平方和等於斜邊長的平方。

 $\overline{AB} = 2$, $\overline{BC} = \sqrt{3}$, $\overline{AC} = \sqrt{4+3} = \sqrt{7}$,

正方形 ABFG 周長+正方形 BCDE 周長= $4\times2+4\times\sqrt{3}=8+4\sqrt{3}$,

正方形 AHIC 周長 = $4\sqrt{7}$,

兩式不相等。